DRAFT: June 28, 1995 - 04:19

Serious Putty
Topological Design for
Variational Curves

and Surfaces

William Welch
School of Computer Science
Carnegie Mellon University

Abstract

In this work we develop a new approach to designing curves and free-form surfaces on a
computer. It is inspired by a style of pencil-and-paper design used for sculptured surfaces,
in which the designer specifies the shapes of important curves (character lines) and indicates
surfaces that pass through them smoothly, with no unnecessary bulges or wiggles (that is,
the surfaces are fair). Unlike previous modeling approaches based on the notion of character
lines, we allow surfaces to be cut apart and smoothly joined along arbitrary curves, so that
the designer can build up complex shapes and topologies from simpler ones. Further, our
surfaces are infinitely stretchy, so that the designer may add unlimited amounts of detail
simply by indicating more control points and curves. Finally, portions of the surface may
be made to copy externally controlled shape tools. This allows the designer to mix free-form
and structured shapes within a single composite surface model of arbitrary topology.

This kind of conceptually simple shape description (“give me a fair surface bordered by
these curves that passes through those curves while touching that point”) may be precisely
interpreted as a functional minimization problem in the calculus of variations (“give me the
surface coordinate function that maximizes this fairness integral subject to those geometric
constraints”). Our modeler represents curves and surfaces implicitly, as the solutions of
such variational minimization problems. As the designer interacts directly with a surface,
the modeler interprets these actions as changing the variational shape specification. Trian-
gulated point sets are used to approximate these smooth variational surfaces in real time,
using a novel finite-difference scheme over arbitrary-topology surface meshes along with an
adaptive, interactive mesh refinement and re-triangulation scheme.

Ultimately, all of these numerical details are hidden from the designer, who sees a
pristine surface that may be grabbed at arbitrary points and along arbitrary curves, and
whose shape changes in simple, predictable ways. The resulting ability to interactively
design variational shapes of arbitrary, mutable topology has never before been available in
a geometric modeler.

DRAFT: June 28, 1995 —04:19

Contents

1 Introduction 5
1.1 Definitions oL 6
1.2 Motivation 6
1.3 Current approaches (and their limitations) 7
1.4 Variational shapes o 8
1.5 Goals o 8
1.6 Approach L 9
1.7 Contributions 9
1.8 Road-map to the thesis o0 oo 10

2 Previous Work 11
2.1 Overviewol e e e 11
2.2 Topology e 12
2.3 Topological Modeling 14
2.4 Parametric surface fitting L L o oo 19
2.5 Optimal shapes: variational curves and surfaces 20
2.6 Interactive variational shape design 35
2.7 Triangulated surfaces L 36
2.8 Computational mesh generation 39

3 Overview 47
3.1 Theuser’s view o e e e e 48
3.2 Shape design as functional minimization 49
3.3 Approximating variational shapes L o o000 50
3.4 Modeling with variational shapes 51

4 Variational Shape Specifications 55
4.1 Ingredients L e 55
4.2 Topology e 56
4.3 Attaching shape specifications to themesh 66

DRAFT: June 28, 1995 —04:19

CONTENTS

5 Approximating Variational Shapes

5.1 Overview of the approximation method
5.2 Why amesh?
5.3 Smooth mesh neighborhoods
5.4 Geometric objective functions o000
5.5 Discretized objective functions 0000,

5.6 Minimizing the objective functions

6 Maintaining a Quality Mesh

6.1 Sample point distributiono o 0oL
6.2 Surface triangulation L Lo
6.3 Controlling the number of samples

6.4 Mesh improvement algorithm

7 Implementing the Modeler

7.1 Computing variational mesh and curve shapes
7.2 Rendering
7.3 A programmer’s VIeW Lo e e e
7.4 Building on top of the substrate.

8 Conclusion

8.1 Comparison with other free-form surface modeling approaches

8.2 Limitations e
8.3 Future Work e

8.4 Review of contributions

Chapter 1

Introduction

In this work we develop a new approach to designing curves and free-form surfaces on a
computer. Traditionally, free-form surface design tools have handled only simple surface
topologies, such as panels for auto bodies. But emerging manufacturing technologies, as
well as increasing demand for richer models in computer graphics and animation, motivates
us to consider more ambitious approaches to free-form surface design, including support for
arbitrary topologies and higher-level, structured shape control.

Our approach addresses these issues by mimicking a style of pencil-and-paper design
often used for sculptured surfaces, in which the designer sketches important curves (char-
acter lines) and indicates that a “nice” surface should pass through them. We go beyond
pencil-and-paper sketching by bringing such descriptions to life in a 3D surface modeler:
a designer will control surface shape by tracing out character lines on a surface and then
re-shaping them, carrying the surface along. Unlike previous modeling approaches based on
this notion of character lines, we allow surfaces to be cut apart and smoothly joined along
arbitrary curves, so the designer can build complex shapes and topologies from simpler
ones. Further, our surfaces are infinitely stretchy, so that the designer may add unlimited
amounts of detail simply by indicating more control points and curves. Finally, portions of
the surface may be made to copy externally controlled shape tools. This allows the designer
to mix free-form and structured shapes within a single composite surface model.

Our approach is based on wvariational shape design, in which shapes are specified im-
plicitly as the solutions to optimization problems. Though the necessary mathematics have
been with us since the 18th century, it is only within the past several years that com-
puters have become fast enough to allow variational techniques to be used for interactive
shape design. An important advantage of the approach is that shapes created by the de-
signer can be viewed as templates for entire families of related shapes, parameterized by
their character lines. Our ability to interactively create variational shapes of arbitrary and
changeable topology, with user-specified sets of control points and curves, has never before
been available in a geometric modeler.

DRAFT: June 28, 1995 - 04:19 Chapter 1. Introduction

1.1 Definitions

Before we begin a description of our approach, definition and discussion of some of the
terms used here is in order. This work is concerned with the design of free-form surfaces
— generally smooth, curved surfaces that may contain occasional creases or corners. At
any given point on a surface, it may be curved in any and all local directions (that is, the
surface is doubly curved). These are sometimes referred to as sculptured surfaces in the
design literature.

Within this broad class of free-form surfaces, we will often be interested in what are
known as fair shapes — surface (and curve) shapes that don’t have unnecessary bulges or
wiggles. Fairness is a necessarily fuzzy notion based on our perception of curve or surface
quality; but it is intimately related to the distribution of curvature over the shape [Mor93].
The surface of an inflated balloon would be considered fair, whereas its deflated counterpart
would likely not be.

A curve or surface’s topology is an abstracted version of its geometric structure: the
relationships that don’t change when its shape is smoothly deformed. For surfaces, this
includes global notions such as open and closedness, handles and holes (a cylinder is open,
and has two holes and no handles; a torus is closed, and has one handle and no holes). It
also includes containment and connectedness relationships between subsets of the object.
Informally, if we consider a shirt crumpled on the floor as an abstract surface, the topological
information includes permanent features like openings for the arms and head, and the seams
that join the sleeves to the body. The seams and holes carve it up into regions, giving us
containment relationships and boundary curves, as well as connectivity information between
these topological features. None of this changes when you put the shirt on.

1.2 Motivation

Computer Aided Geometric Design (CAGD), a field whose principal concern is describing
curves and surfaces using computers, has been a rich area of research and practical applica-
tion ever since hardware for the automated machining of 3D shapes first became available
in the 50’s [Far90]. It is a place “where the math meets the metal.” That said, we should
point out that since its beginnings, which are rooted in in the development of design tools
for the automotive industry, the majority of free-form surface design methods and tools
have addressed simple, planar topologies — as might be used for designing stamped panels,
or the separate pieces of injection molded surfaces. Computationally, dealing with arbitrary
surface topologies is a much more difficult proposition than dealing with planar patches —
enough so that issues have only recently begun to be addressed.

The attention to such issues is particularly timely, given recent advances in manufac-
turing technologies for rapid prototyping. It is now possible to directly fabricate free-form
geometries of essentially arbitrary topology, e.g., by metal deposition [MPR194]. As of this
writing, we are capable of rendering in metal a wide range of surface geometries for which
we have no suitable design tools! Current design tools used with these processes are based
on solid modeling techniques (discussed below), and do not address the problem of direct
design for free-form surfaces. More general surface design tools will ultimately allow indus-
trial designers (who still fall back to clay models on occasion) to exploit this new fabrication

1.3. Current approaches (and their limitations) DRAFT: June 28, 1995 — 04:19

capability for designing and prototyping aesthetic shapes via computer. Aside from physical
realization through manufacture, such geometries are also desirable as “virtual artifacts.”
As computer graphics and animation progresses, so does its appetite for richer geometric
models, and it is desirable to consider more ambitious design tools.

1.3 Current approaches (and their limitations)

Direct-surface modelers typically represent free-form surfaces as piecewise smooth quilt-
works of surface patches [Far90]. The designer is given a mesh of control points or curves
whose number and arrangement is determined by fineness of the underlying surface repre-
sentation. Thus, the designer exercises local control over shape, by re-shaping elements of
the control net. The drawback is that making a conceptually simple change to shape using
such a control net could require moving every single element in a coordinated way, if the ge-
ometry of the change does not fit well with the given mesh structure. As if this weren’t bad
enough (and in fairness, recent research has aimed at better, nonlocal control of such quilt-
works [CG91, WW92, Kal93]), the mathematical form of many of these patches necessarily
restricts the global surface topology. Piecewise smooth patch schemes based on rectangular
control nets are obviously restricted to sheets, cylinders, and tori as their only natural model
topologies. Many older approaches based on smooth triangular elements are similarly lim-
ited, though the reason is more subtle (Section 2.4). Topologically general piecewise smooth
representation schemes are generally more complex constructions[MLL*92], and remain an
active area of research BGWS88, LD90, HKD93, Loo94].

More ambitious topological modeling for manufacture has been the purview of Construc-
tive Solid Geometry (CSG) approaches[RV82]. Here, complex composite shapes are built
up by combining simple solid primitives (e.g., prisms, spheres) using Boolean set-theoretic
operations (e.g., union and difference). While we can design unrestricted surface topologies
this way, there is no direct, explicit control over surface shape; rather, it is the result of
simple combinations of rigid solid primitives. Thus, even though CSG systems have been
extended to handle primitives with sculptured facesf AMR83, CGP93], these solid-based
methods do not address design situations where creating an overall graceful surface shape
is a goal.

Another approach to topologically unrestricted design is direct volume sculpting, where
local changes to the surface may be made by chipping away or adding “material” to a
3D neighborhood [GH91]. The drawback again is that global changes in shape must be
formulated as sequences of local operations that touch potentially every point on the surface.

Finally, the character line approach to design described in opening paragraphs is an
example of vartational shape design, about which we will say a good deal more, below. As
we shall see in Chapter 2, there has been a fair amount of CAGD research (much of it in
the last 5 years) into variational shape design. The work in surface design falls into two
broad categories: schemes that generate high quality surfaces of perhaps arbitrary topol-
ogy, but do not run at interactive speeds; and schemes that run at interactive speeds but
cannot generally produce high-quality shapes, and generally do not accommodate arbitrary
topologies.

-~

DRAFT: June 28, 1995 - 04:19 Chapter 1. Introduction

1.4 Variational shapes

In this work we focus on a class of free-form shapes that are optimal in a certain sense. In
designing free-form curves and surfaces, we will often want them to take on fair shapes within
a region; or we may want portions of a curve or surface to copy some other prototype shape
as nearly as possible. Each of these notions can be expressed as an optimization problem:
find a shape that maximizes fairness, or minimizes deviation from a given shape. Many
shapes from nature can also be described in terms of optimization (soap films minimize
their surface area; loaded elastic beams minimize their total curvature). A shape that
optimizes some given quality measure is often referred to as a wvariational shape in the
CAGD literature[HS90], because it is best described mathematically using the calculus
of variations[CH37]. As we will see, though the mathematics behind such shapes can be
intricate, their high-level descriptions are remarkably simple (“give me a fair cylinder with
end curves shaped like this, passing through that point”); and this yields a powerful, concise
vocabulary for describing curves and surfaces. A nice side-effect of this kind of shape
specification is that, instead of static geometry, one has actually specified an entire family
of similar shapes, parameterized by the specified control curves.

In later chapters, we will manage to escape with only a very small dose of variational cal-
culus (just enough to let us approximate solutions to the optimization problems). Nonethe-
less, this technical term “variational” occurs fairly often in our discussions, for no better
reason than that we need a convenient name for this class of shapes. You could safely ignore
its technical meaning, and mentally substitute “optimal” or “high quality” if you prefer.

1.5 Goals

In this work we will address the problem of specifying and representing free-form shapes
variationally. Some specific goals are:

e Model variational surfaces of unrestricted topology. Surfaces may be open or closed,
and have any arrangement of holes and handles.

e Allow the designer to precisely control portions of the surface shape by specifying
control points or curves through which the surface must pass.

e Allow the designer to stretch, shrink, or deform surface areas without restriction, and
add arbitrary amounts of detail.

e Allow the designer to interactively and incrementally build up smooth topologies
through surface surgery: cutting, stitching, creasing, and skinning along embedded
control curves.

e Since not all shapes are best described variationally, allow the designer to incorporate
explicit shapes into a variational model and thus create structured composites.

1.6. Approach DRAFT: June 28, 1995 - 04:19

1.6 Approach

The surface behavior outlined in these goals can be precisely characterized in terms of
a simply formulated (if not simply solved) variational optimization problem. User-defined
control points and curves act as geometric constraints on the possible shapes; the automatic
fairing and shape-copying behaviors are then realized by optimizing the shapes of user-
specified topology subject to these geometric constraints. In this work, we minimize a
measure of the curve or surface’s total curvature as a way of making it seek a fair shape.

Unfortunately, it is not generally possible to solve such variational problems explicitly.
We therefore develop a method for approximating solutions to these curvature-minimization
problems using a triangulated surface mesh. This involves setting up a generalized finite-
difference scheme and optimizing estimated curvatures over the mesh (a process that is
complicated by the fact that we have no global parameter plane over which to formulate
the computation). A dynamic adaptive mesh scheme is used to maintain a good sampling
and triangulation of the surface as its shape changes.

Ultimately, we are able to treat this approximation machinery as a “black box”. This
allows us to build an interactive modeler that operates on variational curves and surfaces as
its basic shape representation, much like a conventional modeler might operate on B-splines
or Bezier patches. We interpret user interactions as modifying the variational specification
for the shape, and rely on the modeler to recompute fresh approximations to the new shape
at interactive speeds.

1.7 Contributions

The primary contributions of this work are:

e It is the first work to address interactive, incremental design of free-form surfaces of
arbitrary topology where the user has explicit control over the topology at all times.

e It is the first interactive approach to free-form surfaces allowing the user to “slide”
surface features around relative to each other.

e It includes an approximation scheme for geometric thin plate surfaces, based on tri-
angulated surface meshes, that is speedy and robust. Some secondary results related
to this scheme include:

— an approach to computing neighborhood parameterizations for a finite-difference
scheme over an arbitrary topology mesh

— an adaptive mesh generation scheme suitable for use in interactive modeling for
arbitrary-topology surfaces.

As part of this work, we built an interactive, direct manipulation surface modeler that
demonstrates all of the functionality discussed above (though no one would mistake it for
a full-fledged industrial design tool). The modeler itself represents a number of secondary
contributions:

DRAFT: June 28, 1995 - 04:19 Chapter 1. Introduction

e It is the first modeler that uses variational curve and surface specifications as its basic
shape representation (built on top of the approximation machinery above).

e It is the first variational modeler that allows a designer to build up surface topology
in terms of “surgical operations” on the 3D surface. Traditional alternatives are to
indicate edge correspondences on a single polygonal (2D) domain (e.g., [FRC92]), or
in 3D to connect-the-dots and fill-the-holes to build up a surface control net (e.g.,
[CK83]). Neither of these protects the designer from specifying nonsensical surface
topologies.

1.8 Road-map to the thesis

We begin with a discussion of a wide range of existing curve and surface modeling techniques
(Chapter 2). The sections of this chapter are relatively self-contained, and the reader may
prefer to refer back to them when directed from later chapters. We begin an overview of our
approach to shape design with a sample design session (Chapter 3). A detailed discussion
of our approach begins with methods of specifying and representing variational curves and
surfaces (Chapter 4). This is followed by a method for approximating their shapes using
triangulated meshes, based on a generalized finite-difference scheme (Chapter 5). In addi-
tion to serving as an approximate shape representation, the triangulated surface also serves
as a computational mesh for these approximation calculations. In Chapter 6 we present
a scheme for maintaining a quality mesh as curve and surface shapes evolve. Finally, we
discuss our implementation of a modeler that uses these variational curves and surfaces as
its basic representation for shape, and give additional implementation details for the ma-
chinery presented in the previous chapters (Chapter 7). The dissertation concludes with a
summary of the contributions, and discussion of possible extensions to the work.

10

Chapter 2

Previous Work

In this chapter, we survey previous approaches to computer-aided design of free-form shapes,
and review the mathematical topics and techniques that play a role in our modeling ap-
proach. There is a wide variety of free-form surface modeling approaches in the literature.
None of them manages to deliver globally fair, arbitrary surface topologies at interactive
speeds, but they fall short in a number of very different ways. We consider the various
mathematical/computational elements that go into a free-form surface modeler, leading up
to a discussion of interactive modelers in Section 2.6. This is followed by a discussion of
computational techniques for triangulated surface meshes used as approximations to smooth
surfaces.

2.1 Overview

[Topology and design] We’ll begin this chapter by reviewing some concepts and termi-
nology from topology relevant to surface modeling (Section 2.2). A fundamental aspect of
our approach to modeling curves and surfaces is the separate handling of topological and
positional information for a given model. Some approaches to topological specification in
computer-aided design are taken up in Section 2.3. A topological description of a surface
captures the ways in which various regions of a surface are connected to or contained within
each other — relationships that do not change when the surface is smoothly deformed.
Because a given abstract surface (e.g., the topological sphere S%) will have many possible
realizations as a surface in 3D (e.g., a pear, a head, a dining-room table), most of these
modeling approaches also specify shape along with topology.

[Fair surfaces] By far, the most common methods of representing topologically inter-
esting free-form surfaces is as collections of simpler (typically rectangular or triangular)
patches, joined along their edges to form a piecewise smooth composite surface. Methods
for computing the shapes of such piecewise smooth elements can be usefully classified as
local or global. Local methods construct a surface one patch at a time, using geometric con-
structions that take information such as edge position and tangency requirements along a
patch boundary and conceptually work inward to compute the shape of the patch’s interior.
Global schemes, which operate simultaneously on collections of patches, most often optimize
some global shape objective or attempt to satisfy global area or volume constraints. In this

11

DRAFT: June 28, 1995 - 04:19 Chapter 2. Previous Work

work, we are interested in generating globally fair surfaces — “nice” surfaces having no
extraneous wiggles. This is a bit more restrictive than simply asking for a smooth surface;
as an example, an egg-crate mattress’s surface is smooth but not fair. As will be seen,
purely local schemes aren’t capable of generating high-quality faired surfaces, and this will
lead us to ultimately consider only global schemes.

[Shape optimization] We will consider some precise mathematical definitions of “fair-
ness”. A number of different characterizations have been used previously, each having
strengths and weaknesses. Given a particular characterization of fairness, it is possible to
cast surface shape specification as an optimization problem. Using the calculus of vari-
ations, the desired shape can be described as the solution to a variational minimization
problem with the fairness measure as the objective function. We will cover some of the
existing variational shape design approaches, their ways of assessing a shape’s fairness, and
(because such variational problems are almost never solvable in closed form) their solution
approximation methods.

[Interactivity] Another important goal of our modeling approach is interactivity. Only
a few of the global approaches we will discuss are appropriate for modeling at interactive
speeds, recomputing curve or surface shapes quickly as the designer changes the specifi-
cation. In Section 2.6 we discuss the current range of interactive variational modelers,
and discuss some of the issues involved in supporting interactivity. In order to keep their
computations tractable, interactive systems generally restrict the kinds of constraints and
objectives that can be used in describing a surface, and unfortunately this restricts the kinds
of shapes and topologies that may be effectively modeled. Overcoming these limitations will
motivate many of our representational and algorithmic choices in the the following chapters.

[Triangulated surfaces] Finally, the approach we will develop uses triangulated sur-
faces. In support of the actual shape optimization computations of our approach, it will be
important to compute over mesh vertices as if they were discrete samples of some under-
lying smooth surface. It will also be necessary to maintain good triangulations (serving as
computational meshes) over surfaces. The last section of this chapter reviews some work in
mesh generation for curved surfaces. Mesh generation for surfaces in 3D is a much more dif-
ficult problem than mesh generation in the plane, because of the difficulties in constructing
surface triangulations over points in space.

2.2 Topology

In this work we are concerned with smooth curves and surfaces. We begin with a brief
review of topological concepts, specialized to these objects. Viewing an abstract surface as
a set of points, the set’s topology defines connectivity and containment relationships among
subsets of its points. Locally (that is, within a small neighborhood of a point on a curve
or surface), the topology of our objects is always the same: curve neighborhoods have the
1-dimensional topology of an open interval (or half-interval, for boundary neighborhoods),
and surface neighborhoods have the 2-dimensional topology of an open disc (or half-disc
on the boundary). It is global topological information, rather than local, that interests
us here: continuity and containment relationships among subsets, handles and holes in
a surface, and the surface’s genus. Holes are openings in a surface, bounded by closed

12

2.2. Topology DRAFT: June 28, 1995 - 04:19

Figure 2.1: (L) Party Hat: a branching surface. (R) Party Flat: the topological regions
associated with the surface on the left.

curves: topologically, a cylinder is a sphere with two holes cut in it. Genus is a count of
the number of handles on a surface: a sphere is genus 0, a coffee-cup or donut is genus 1
(though it is probably too late to convince the world to speak of donut handles), and a
pair of scissors has a genus 2 surface. Such topological information is largely independent
of the particular shape a surface may have. Figure 2.1 shows a branching object and the
topological information distilled from it.

The standard approach to representing general topological spaces builds them up as com-
binations of the simplest possible spaces. These simpler spaces (0D points, 1D intervals, 2D
triangles, 3D tetrahedra, etc) are called simplices, and spaces built up from them according
to a few simple rules are called simplicial complexes. General simplicial complexes can rep-
resent manifold topologies (curves and surfaces), and non-manifold topologies (Figure 2.2).
A formal discussion of the rules that govern the construction of simplicial complexes would
therefore be more precise and more general than is warranted here (see Janich[J&dn84] for
a lively presentation of point-set topology leading to simplicial complexes and topological
“eluing” operations, or Massey[Mas77| for a more comprehensive treatment). Informally,
simplices may be glued together by having individual elements share boundary elements.
Thus, 1D curve domains are built up by pairing endpoints of disjoint intervals, and 2D
surface domains are built by pairing edges of disjoint triangular faces. Note that it is con-
nectivity among simple topological elements that is being recorded here, not shape. Even
though our illustrations render surface complexes as triangulated surfaces situated in 3D,
topological reasoning over a complex is a combinatorial process and makes no use of such

13

DRAFT: June 28, 1995 - 04:19 Chapter 2. Previous Work

Figure 2.2: Two simplicial complexes. The one on the left represents a cylindrical surface
strip. The one on the right, well.... A triangulated surface along with its nodes and edges
constitutes a valid simplicial complex, but the converse is not necessarily true.

spatial coordinates. As an example, the Euler characteristic x is a fundamental algebraic-
topological quantity, and is given by F-E4+V, the alternating sum of the number of faces,
edges, and vertices. The Euler characteristic is related to the genus ¢ of a surface by
X = 2(1—g). It is invariant for a given topological surface: the genus of the surface doesn’t
depend on the way we triangulate it.

To take an abstract surface and associate 3D coordinates with its points — as we do in
rendering our surface meshes as triangulations in 3D — is to create an immersion of the
abstract surface. If that immersion is such that the 3D surface does not intersect itself,
qualifies as an embedding of the surface.

In modeling applications where a surface is represented as a piecewise smooth mesh
of patches, it is trivial to interpret such a mesh as a simplicial complex, or more general
cell complex when the patches are not triangles. Having an explicit topology representation
leaves open the possibility of computing over and formally reasoning about model topologies

[Min83, DC91, DE93, PBCF93].

2.3 Topological Modeling

In this section, we consider approaches to surface modeling that admit variable topologies.
Some of the approaches will represent topological information implicitly — it depends on
and must be derived from other geometric information. Other approaches will build on
explicit topological representations that may be directly modified. Of course, none of these
approaches is concerned exclusively with topological specification, but also with specifying
a particular shape along with the given topology. We’ll take up some of these shape-related
issues in more depth in subsequent sections.

14

2.3. Topological Modeling DRAFT: June 28, 1995 - 04:19

Figure 2.3: A molecular surface represented as a contour of a sum of Gaussian functions. A
single bias parameter controls the “blobbiness” of the shape, and can change the topology
as a side-effect.

2.3.1 Algebraic curves and surfaces

One approach to representing free-form surfaces of arbitrary genus is as contours of algebraic
functions defined over R? that is, the set of points

x € R? |F(x) = 0.

for some scalar function F. As an example, a sphere of radius r centered at point p could
be implicitly defined as the points satisfying (x — p) - (x — p) — r? = 0. This is a broad
class of functions, and has seen a variety of uses in modeling and animation[Bli82, Hec94a]
(Figure 2.3). A benefit of working with such a representation is that it is computationally
inexpensive to decide whether a given point in space x is inside, outside, or on the surface
(just evaluate the function and look at the sign of the result). The chief difficulty with
such a representation is that it is not easy to operate directly on the surface itself, e.g., to
render it, or measure its shape properties within some region, or determine its topology.
Such operations need explicit representations of surfaces as mappings from some 2D domain
into 3D (parametric surfaces, discussed next). Algorithms for recovering explicit surfaces
from an implicit definition involve contour tracing (e.g., the popular “marching cubes”
algorithm[Blo94]), or point-sampling [dFGTV92, WH94, Hec94b] when a triangulation of
the surface is not required.

Although it is trivial to modify functions and their parameters to generate a wide variety
of surfaces, doing so in a controlled way, so that the resulting surface satisfies given geometric
constraints, is more difficult. This kind of inverse-control for implicit curves and surfaces has
been accomplished through algebraic function fitting[Pra87, Baj92], and direct construction
of implicit blending surfaces [MS85, HH87, Roc89]. Many of these methods construct blend
surfaces of simple, fixed topology using restricted sets of basis functions. Though this does
not allow the range of topologies possible with general implicit functions, one does not
generally want interesting topological behavior from a rounding or fillet operation.

More general inverse control with arbitrary constraint points is also possible with direct
fitting techniques [Pra87] or iterative relaxation of the parameters of a given set of shape

15

DRAFT: June 28, 1995 - 04:19 Chapter 2. Previous Work

/\\

P
-

Figure 2.4: A solid model and its associated CSG tree of operations. The smaller cylinder
is subtracted from the larger to make a socket in the top. The socketed cylinder is then
unioned with the slab.

functions[WH94]. When a rich enough set of basis functions is used, the actual topology of
the fitted algebraic surface may begin to depend on the particular values of parameters. For
example, a surface generated by a sum of Gaussians [WH94] may vary between multiple
disconnected regions and a single blob, or have holes and concavities depending on the
settings of the Gaussians’ origin, bias, and standard deviation parameters (Figure 2.3).
Though it is possible to determine the topology of the fitted surface through contour tracing
(though only within a given level of detail), there seems to be no general way to turn
this around and constrain the topology of such surfaces to remain fixed, e.g., by placing
constraints on the allowable values of the parameters.

2.3.2 Particle systems

Szeliski, et al.[ST92, STT93] present a modeling approach that uses localized particle in-
teractions to make the particles behave as if they were being attracted to some underlying
surface. The result is evocative of a point-sampled implicit surface, but without an actual
implicit function contour defining the surface. Because there is no fixed connectivity be-
tween particles, fluid “topological” changes occur when portions of the “surface” come into
contact and their particles merge. The limitation for topological design is ultimately the
same as with implicit surfaces: we want to prescribe topology, and change it in controlled
ways. This cannot be done using such a particle system because there is no underlying
surface topology. It is not sufficient to merely impose and maintain a surface triangulation
over the particles (this in itself is difficult, as the discussion in Section 2.8 will show), since
the particles’ interactions do not take such a triangulation into account. We’ll say more
about particle systems and associated triangulations in the mesh generation discussions of
Section 2.8.

16

2.3. Topological Modeling DRAFT: June 28, 1995 - 04:19

2.3.3 Solid modeling and B-reps

Possibly the most widely-used approach to designing topologically interesting surface models
is actually a method of specifying 3D solids: Constructive Solid Geometry (CSG)[RV82,
Req80]. Briefly, a 3D solid is specified as the result of applying boolean set operations
(union, intersect, complement) to solid primitives. Figure 2.4 shows an example of such
a construction. A solid model is represented implicitly as a tree of boolean operations
applied to a set of primitive solids. One popular way of implementing CSG schemes is in
terms of an explicitly represented boundary surface, referred to as a B-rep solid[Req80].
These boundary representations comprise 2D faces joined by networks of boundary curves.
If we consider only the connectivity information in this graph of nodes, edges, and faces,
we have an abstract topological surface specified as a cell complex. In its purest form,
a designer never directly interacts with these topological elements; rather, changes to the
cell complexes are implied as the results of Boolean operations on bounded solids. After a
boolean operation has been performed (e.g., the small cylinder is subtracted from the larger
in Figure 2.4), holes are cut in the B-rep surface and necessary faces are added to arrive at
the boundary of the resulting solid. An advantage of this approach to design is that, when
an object is being designed for subsequent manufacture, very often we are interested having
a surface that does bound a 3D solid.

For the purposes of curved surface design, the approach has two main drawbacks: first,
there is no direct control over the model’s topology. One could imagine re-sizing or re-
positioning the larger cylinder in Figure 2.4 and accidentally leaving the cylindrical socket
behind, thus inadvertently changing the topology of the model as the result of a re-shaping
operation. This is more of a problem in more complex models where we wish to maintain
constraints that may not readily fit into the decomposition hierarchy. The second drawback
is that there is no direct control over the surface as a surface: a designer cannot directly
reshape a face (or group of faces), since they are defined as boundaries of solids, not as
free-standing surfaces.

More recent solid modeling approaches have allowed one to deal with B-rep surfaces
as free-standing surfaces, so-called “non-manifold” topologies (really “non-solid”), and this
allows open, bordered surfaces to be represented [Bau75, Wei85, RC86, CGP93]. Their mo-
tivation is that there are certain solid operations that seem to want to leave an open surface
or unadorned edge as their result. One may represent intermediate stages in construction of
a boundary surface by cutting and pasting feature boundaries [RIKM93], where the inter-
mediate forms may not make sense as surfaces or solids. These approaches argue for being
able to explicitly represent and operate on surfaces, even in a modeler that ostensibly is
only concerned with generating solids.

2.3.4 Domain complexes

Ferguson, et al.[FRC92], present a finite-element approach to modeling arbitrary smooth
topologies. In the tradition of 2D finite-element mesh generation, they address the problem
of topological design for sculptured surfaces by conceptually “cutting” a desired closed sur-
face and unfolding it into a single polygon (Figure 2.5 is their double-torus example). The
originally joined edges are identified with one another and are forced to maintain comple-
mentary boundary conditions during subsequent computations (the numerical difficulties of

17

DRAFT: June 28, 1995 - 04:19 Chapter 2. Previous Work

Figure 2.5: The double torus may be flattened into a single octagonal domain by making
a number of cuts. In subsequent shape-related computations over this domain, these cut
edges would be identified with one another using geometric continuity constraints.

actually doing this will be taken up in later sections). Note that at the time the designer
specifies the domain polygon, there is not an actual embedded surface to cut apart; a finite
element calculation is subsequently used to compute an immersion for the domain. Incre-
mental approaches to specifying complex topologies are more designer-friendly, allowing one
to alternately reshape portions of a model and then perform surface surgery on the current
immersion. We discuss these next.

2.3.5 Changing topology by directly editing cell complexes

Intermediate between the two extremes of having topology fall out as a side-effect of geomet-
ric operations (CSG) and having to completely specify topology in the absence of geometric
specification (domain complexes) are schemes that allow the designer to directly operate
on topological cell representation by interacting with a 3D realization of the cell complex
— as with the polyhedral shells of [CK83, Nie88], or the “connect-the-dots” approach to
specifying a cell complex in [MS92]. The designer works directly with the edges and vertices
of a polyhedral (piecewise-linear) shell. Later, the shell edges and faces are skinned with
smooth curves and surfaces.

Shells may be built up piece by piece, by connecting points with edges, then designating
loops of edges as faces; but this leaves the problem of topological consistency up to the
designer. Baumgart[Bau75] proposed an approach to constructing B-rep models that uses
simple operations guaranteed to preserve the topological consistency of the model. One
starts with a base solid and whittles away at it with “topology-safe” local operations until
the desired polyhedral boundary has been achieved. We will develop our own topology-safe
operations for surface meshes in Chapter 4.

2.3.6 Higher-level geometric operations implying topological change

Preventing the designer from directly interacting with (and botching) a cell complex is an
important idea. Along these lines, others have considered automating lower-level changes to
the topological representation through the use of higher-level geometric operations. Toriya,
et al.[TTSCI1] propose CSG-flavored boolean operations on the skinned polyhedral shells

18

2.4. Parametric surface fitting DRAFT: June 28, 1995 - 04:19

above. They successfully avoid the expense of computing accurate surface intersections
by making a coarse polyhedral approximation to the smooth intersection curve, deducing
topological changes using this coarse curve, and ultimately incorporating the polyhedral
curve into the boundary of the primary shape (which is then re-skinned with a smooth
surface). Bonner, et al.[BJWK93] use higher-level operations to interactively build up sur-
face topology for tubular structures (such as in auto body frames). Tubular structures are
represented as quiltworks of patches offset from an underlying network of backbone curves.
When the designer attaches one tube backbone to another, this triggers appropriate surgery
on surface patches around the join to adjust the surface topology. The resulting models
combine independent explicit faces (the flat sides of frame tubes) connected by dependent
faired blending faces.

2.4 Parametric surface fitting

From the discussion above, we see that free-form modeling approaches that allow direct
control of arbitrary smooth surface topologies do so by embedding 2D cell complexes in
3D space. This is often accomplished by constructing a piecewise smooth surface, with a
separate patch for each cell of the topological domain complex. In order to treat arbitrary
topologies, we will not attempt to view the surface as a single map from a triangulated
subset of R% to R3 . It can be shown that in imposing a (u,v) coordinate system over an
arbitrary genus surface, one cannot avoid introducing a number of singularities, this number
being related to the genus of the surface. This is known colloquially as the “hairy ball”
theorem, which says that you cannot comb the hair on a hairy ball without leaving a crown
(singularity) somewhere (see [GP74] for a user-friendly discussion of the Poincaré-Hopf
theorem, from which this derives). This disqualifies most techniques from the scattered-
data fitting literature, as they depend on having a set of interpolation points all referred
to a common parameter plane, and construct a surface function of the form s(u,v) =
(u,v, f(u,v)). Franke and Nielson[F'N90] survey this type of surface construction.

Methods that map patches of R? to R® are known in the Computer Aided Geomet-
ric Design (CAGD) literature as parametric schemes. The general functional form we
seek is vector-valued, s(u,v) = (z(u,v), y(u,v),z(u,v)). Many particular functional forms
and constructions have been developed as parametric schemes, and an excellent survey is
Mann, et al.[MLLT92]. Some additional parametric approaches not covered in the survey
include subdivision surfaces[Doo78, CC78, HDD194], generalized B-splines[L.LD90, Loo94],
and, though not exactly a parametric approach, piecewise smooth implicit surfaces that
interpolate triangulated data[Baj92]. These and the surveyed approaches are all local; that
is, each patch is constructed independently, using only data that is nearby. An important
observation of Mann, et al.is that none of the surveyed local schemes produces very fair
composite surfaces. That it should be so difficult to find a local construction that leads to
a globally fair surface is not so surprising ': though we’ve no precise definition of fairness,
and such a notion is ultimately subjective, fairness has much to do with the distribution
of curvature over the entire surface]MLL192, Mor93]. Locally constructed surfaces can

'The surprising result was that wildly differing construction schemes all exhibited similar shape defects:
curvature tended to be concentrated near patch boundaries.

19

DRAFT: June 28, 1995 - 04:19 Chapter 2. Previous Work

be arbitrarily bad with respect to this global criterion. In these constructions, curvature
information is not being communicated between adjacent patches, much less globally.

2.5 Optimal shapes: variational curves and surfaces

The inability of local patch schemes to produce high-quality composite surfaces leads us
to consider global approaches to surface patch construction. Information about surface
position and shape will be shared among neighboring patches, requiring that all patch
shapes be solved for simultaneously. This is much more computationally involved than a
local scheme; but if we care about such global shape properties, then clearly a global scheme
is indicated. A survey by Lounsbery, et al.[LMD92] compares some of the local schemes
surveyed in [MLL*92] with Moreton’s high-quality global scheme[Mor93] (discussed below),
and makes similar observations.

Global schemes involve geometric quality measures evaluated over the surface as a whole,
rather than considered patch-by-patch. They lead to constrained optimization problems, in
which some global shape measure (e.g., fairness) is optimized subject to local constraints
such as point or curve interpolation or global constraints on, e.g., area or volume. The
mathematics involved is the calculus of variations, which in its most general form allows us to
pose a problem whose solution is a function y = f(z) such than an integral objective function
[g(z,y,y,y"...)dz is at a maximum or minimum subject to side conditions (constraints)
on f.

The calculus of variations has its roots in several problems related to shape, including
the catenary arch (an optimal load-bearing shape), the brachistochrone (an optimal shape
for a roller-coaster track), and the shapes assumed by thin rods (elastica) under various
bending moments[Boy91]. This latter is particularly relevant here, because physical splines
— thin flexible strips guided through rotating sleeves called “ducks” — have long been used
in drafting and design to construct fair curves that pass through specified interpolation
points. The first mathematical model for such physical behavior was proposed by James
Bernoulli in 1694, that the bending moment of an elastica was proportional to the radius
of curvature produced. Some years later Daniel Bernoulli cast this one of the earliest
variational minimum principles, suggesting that all varieties of elastica could be described
as taking on shapes that minimize total bending energy [x%ds, the integral of squared
curvature over their lengths. (see [Tru83] for a brief history of the elastica problem).

Elastica have long served as a basis for numerical curve fitting in CAGD, yielding fair
curve functions that emulate the geometric behavior of physical splines[Far90]. More gen-
eral use of minimum principles to define variational shapes? for design has been taken up
in earnest within the past several years (see the survey in [HS90]). Variational modeling
approaches are best distinguished from one another by the constraints and objective func-
tions they use to specify shape, and the particular explicit curve and surface representations
they use in constructing solutions or approximate solutions, and we will have a closer look
at each of these below. Not all of the work reviewed below is cast explicitly in terms of

2The term “variational shape” is also used in the industrial design literature [LGL81, BS91] in a different
sense, to refer to a continuum of shapes that satisfy mechanical tolerances specified as inequality constraints.
This should not be confused with our usage here as the solution of a variational optimization.

20

2.5. Optimal shapes: variational curves and surfaces DRAFT: June 28, 1995 - 04:19

variational optimization; but in the cases where the shape optimization has been formulated
directly in terms of some explicit piecewise surface representation (as in, e.g., [DWS93]),
it is often true that a variational problem has actually been discretized, and a variational
description serves to unify these disparate approaches.

2.5.1 Solving for variational shapes

Though we will discuss a variety of minimum principles and variational shape problems
below, there will be no real need to discuss direct solution techniques. Though there are
explicit solutions for some of the curve forms developed below, the same is not true for
surfaces, for fairly deep reasons. There is a direct connection between variational surface
problems and 2D systems of partial differential equations 2. Except for the very simplest of
topological domains and restricted classes of objective functions, explicit solutions cannot
be found for these variational shape problems, for the same reasons that it is difficult to
write down direct solutions for any but the simplest systems of partial differential equations.
For the kinds of curves and surfaces we will consider here, the best we will be able to do is
construct approximate solutions.

Approximations to variational curve and surface shapes are typically computed us-
ing either a finite-difference approach over a set of discrete sample points (e.g., [KWT87,
BCGH92, Ter86]), or a finite-element approach over a piecewise smooth polynomial curve
(e.g.,[Nie74, CG91, Mor93]). At a high level, we will not make much of an issue over the
differences between the two approximation approaches, because they can be viewed as the
same basic approximation method (minimization of a residual error term) applied to dif-
ferent curve/surface representations. Because of the way derivatives are computed in a
finite-difference scheme, it can be seen as numerically equivalent to a finite-element method
using a C% (continuous, but not smooth) collection of polynomials, one for each data point
neighborhood[ZM83]. Both approaches end up computing a “best-fit” of their piecewise
curves to the given variational shape by re-expressing the variational objective as a set of
algebraic equations written in terms of explicit curve and surface elements, a procedure
known as discrelizalion, then solving for the parameter values that minimize the discretized
integral. We will take up the actual numerical details in Chapter 5. The reader may also
consult Becker, et al.[BCO81], an excellent general finite element text.

The amount of computational effort needed to compute such approximations will be
of concern to us, since we want to compute them at interactive speeds. There are several
contributing factors, all related to the complexity of the algebraic equations that arise when
the variational problem is expressed in terms of a specific approximating representation.
These include the numerical form of the approximating representation, the complexity of
the objective itself, the numerical form of constraints placed on the solution, continuity
constraints imposed between neighboring elements of the representation, and the topological
complexity of the domain. In reviewing some of the modeling approaches below, we will
see a fundamental tradeoff: schemes that are capable of generating high quality surfaces
of arbitrary topology do not compute their surface approximations at interactive speeds;

#They are related via the Euler-Lagrange equation, a basic tool in the calculus of variations. Strang[Strg6]
includes introductory chapters on the Euler-Lagrange equation, and on solution techniques, both symbolic
and numerical.

21

DRAFT: June 28, 1995 - 04:19 Chapter 2. Previous Work

Figure 2.6: A curve that minimizes the geometric elastica functional subject to the con-
straint that it interpolate the given control points. This functional approximates the bend-
ing energy of a physical spline.

and schemes that run at interactive speeds cannot produce generally acceptable surfaces, or
else are topologically limited. We will return to these issues after first considering current
approaches to variational shape description in more detail.

2.5.2 Fairness functions

Mathematical measures of curve and surface fairness, like Bernoulli’s measure of bending
energy, are formulated as local measures that are integrated over an entire piece of geometry.
Thus, a fairness function takes the shape of a curve or surface as input and returns a single
number measuring its fairness. In our work, the particular value returned for a single
curve or surface needn’t be — and often isn’t — meaningful in and of themselves; what
we really want from the objective function is a relative ranking of different curve/surface
shapes by fairness. The fairness functions discussed below all evaluate to 0 for the fairest
possible shape, and greater than 0 otherwise. We may then seek the fairest shape possible
by minimizing such a measure over the space of possible shapes.

Elastic curve fairness functions

As mentioned, perhaps the most venerated measure the fairness of a curve is its elastic
bending energy, the integral of the squared curvature with respect to arc-length,

E= /K(S)st :/(css)QdS, (2.1)

where the subscript indicates differentiation with respect to the arc-length parameter s,
and the squared vector in the integrand is shorthand for the dot-product of the vector with
itself (two conventions we use henceforth). We seek a curve ¢ that minimizes £ for given
interpolation conditions (Figure 2.6). The usual approach is to compute an approximation
by minimizing F over a given algebraic curve. In this case. It is unrealistic to expect such

22

2.5. Optimal shapes: variational curves and surfaces DRAFT: June 28, 1995 - 04:19

a curve to be parameterized by arc-length, F/ becomes more complicated:

E= /H(S)st (2.2)
= [50 e (2.3)

c; X ¢

llee X s (2.4)
C¢ - Cyt

with respect to an arbitrary parameterization ¢. The value of F doesn’t depend on the

particular way the curve has been parameterized, since it is normalized with respect to

4, We will discuss

simpler parametric measures below, measures that do depend on parameterization. But

an arc-length parameterization — that is, the measure is geometric

a basic assumption of this dissertation is that geometric measures are worth their added
complexity. Parameterizations are an artifice in geometric modeling — something needed
at a low level in order to do calculus on a curve or surface (to measure shape properties),
but not something a user should ever worry about. More importantly, when considering
smooth surfaces of arbitrary topology, geometric measures are absolutely necessary for the
simple reason that global parameterizations do not always exist.

F is a nonlinear function, and computing an approximate minimizer will require iter-
ative numerical techniques, much like those used to solve systems of nonlinear differential
equations, and accompanied by similar difficulties| PTVF94]. Because of the complexity of
working with Equation 2.1, a variety of simplified approximations have been proposed. The
simplest approximation minimizes [(c)?dt, the squared magnitude of the second paramet-
ric derivative. When a linear curve representation is used (Section 2.5.4), minimizing this
version of F becomes a linear problem. This linearization will generate reasonable shapes
as long as the curve parameterization resembles a scaling of arc-length parameterization
(that is, as long as ||c¢|| doesn’t vary much over the length of the curve).

Unfortunately, this is not a good assumption to make about the parameterization of a
fitted curve. Schweikert[Sch66] considered this approximation, and noted unwanted inflec-
tion points in segments with “excessive” arc-length relative to the parameterization. He
recommended reigning in the arc-length by adding a membrane term to the objective:

E= / (¢ + ac?)dt, (2.5)

which opposes large values of ||c¢|| by causing the curve to contract. The differential equa-
tions describing curves of this form can be solved directly, yielding an explicit curve known
as the exponential spline, although it is much more common in modeling systems to approx-
imate these shapes with composite curves[NLL90, Kal93, Cel90, WW92]. Of course, for a
true arc-length parameterization the tangent magnitude ||c;|| = 1 by definition, so having

*More confusion in terminology: in some of the elasticity literature cited here, such a parameterization-
independent measure would be referred to as intrinsic. In differential geometry literature, on the other
hand, estrinsic and intrinsic describe measures that do or do not depend on a manifold’s embedding in
ambient space. A curve’s curvature at a point would be considered intrinsic by the former, extrinsic by
the latter. In CAGD literature, where parameterization-independence and embedding-independence are
both useful notions, intrinsic retains its differential-geometric meaning, and parameterization-independent
extrinsic measures are called geometric (well, usually...).

23

DRAFT: June 28, 1995 - 04:19 Chapter 2. Previous Work

Figure 2.7: Composite B-spline curves that minimize the Schweikert functional subject to
interpolation constraints (large dots), and their associated uniform parameterizations (small
dots). Each black curve has had a new interpolation constraint added, placed identically in
space but at different curve parameter values (the resulting shapes are shown in grey). The
lower pair demonstrates how a poorly parameterized constraint point degrades the resulting
global curve shape.

a membrane term drive it to 0 is not really what one wants to do. We have experimented
with penalizing the deviation of [|¢|| from 1, but this does not work well for low-degree
polynomials (which simply do not seem to want to take on arc-length parameterizations).

Any linearization of F will have the drawback over the original geometric form of sensi-
tivity to the parameterization of the fitted curve. A popular way of addressing this limita-
tion, when fitting composite curves, is to construct the composite domain to approximate
an arc-length parameterization using a chordal approzimation[Far90, Epp76, PS83, RFg9,
SM91, HB91b]. As an example, consider a sequence of discrete sample points to be used in
a finite-difference scheme (Figure 2.8). Rather than spacing these points at equal paramet-
ric intervals as is often done in smooth interpolation methods, a chordal parameterization
approximation takes the straight-line Euclidean distance between the points as their para-
metric separation. A chordal parameterization converges on an arc-length parameterization
in the limit as smaller and smaller parametric intervals are considered.

24

2.5. Optimal shapes: variational curves and surfaces DRAFT: June 28, 1995 - 04:19

Figure 2.8: A curve the resulting chord-length parameterization of the indicated points.
The parametric distance between successive points is taken to be their Euclidean distance.

This is an approximation and the actual fitted curve will of course have greater arc-
length than the chordal parameter intervals (unless the fitted curve is a straight line). If the
parameterization remains fixed but the curve is subsequently reshaped, this approximation
may become arbitrarily bad, and the 2nd derivatives cease to be good approximations to
curvature. The overall quality of the shape then decreases, as illustrated in Figure 2.7.
One way of minimizing this effect is to allow constraint points to “slide” on the curve as
it is re-shaped, something we consider when we take up constraints in Section 2.5.3. A
different way of addressing this is to actually re-build the composite parameterization from
the ground up when the curve changes shape, an approach we develop in Chapter 5.

Higher-order curve fairness functions

Finally, we should note that 2nd-order elastica are not the last word in fair curve shapes.
Other authors have made use of higher-order derivatives, including 3rd-order ([Meh74,
HB91b, Mor93]) and 4th-order (mentioned in [HS90]) terms. Moreton[Mor93] pointed out
that minimizing bending energy alone tends to concentrate curvature near the endpoints
of a faired region. He uses a curve fairness functional that measures the variation of cur-
vature over the the interval, [(aajs)st. Minimizing this functional yields curves that seek
constant curvature, and it finds circles and lines whenever they are possible as solutions to
the given interpolation problem, with results that look much more “draftsman-like” than
those arising from strain energy. This is quite a bit more complicated an objective function
than the elastica, and although computing approximations is algorithmically similar, the
calculations are correspondingly more delicate.

25

DRAFT: June 28, 1995 - 04:19 Chapter 2. Previous Work

Thin plate surface objectives

Much of the calculus of curve shape carries straight over to surfaces through the use of cross
sections. We can measure the curvature of a surface at a particular point in a particular
tangent direction by slicing the surface with a perpendicular cutting plane and measuring
the curve of intersection. The result is called the the normal section curvature in the given
direction[O’N66]. One of the first results in the classical differential geometry of surfaces,
due to Gauss[Spi79a], is that the sectional curvature in the neighborhood of a surface
point is a smooth function of tangent direction and takes on its maximum and minimum
values (the principal curvatures k; and kg — the subscripts do not indicate a derivative) in
orthogonal tangent directions. The principal curvatures completely characterize the shape
of the surface about a point, and in turn give rise to important geometric quantities such
as Gaussian curvature (k1k2) and mean curvature (£3152),

The elastic curve functional of Equation 2.1 can be generalized to surfaces using principal
curvatures:

/ (k] + K3)du dv.

The result is commonly called the thin plate functional, because it approximates the strain
energy of a thin elastic plate[TL25] (Figure 2.9). When expressed with respect to an ar-
bitrary parameterized surface, this simple geometric form becomes much more complex,
and we do not write it out here (see, e.g., Hagen and Schulze[HS90]). This is a standard
criterion for surface fairness[NR83, LP88], and has been used on a small scale as the basis
for variational “twist-elimination” schemes in parametric patch constructions[HS90, KR90].
Nonetheless, Equation 2.5.2 does not seem to be widely used (if at all) to fair composite
surfaces having many free parameters, perhaps because of the complexity of its paramet-
ric form and the computational difficulties of optimizing such a highly nonlinear objective
function over a large number of degrees of freedom.

Much more popular are linearized forms of Equation 2.5.2 that use second-order para-
metric derivatives in place of principal curvatures:

E= / (Suu “Suu T Suw - va)du dlU7

or including a “twist term”:
E= / (Suu “ Syu t 251“1 * Suv + Suu - va)du dv.
As with curves, 2nd-order terms alone are not quite enough to control the surface, this time
because there is no area-related feedback. Lott and Pullin [LP88] augment Equation 2.5.2
with 1st order springs to keep the surface from straying far from its original shape. Much
more prevalent is the use of lst-order membrane terms, analogous to Schweikert’s curve
functional[Ter86, Pot91, Nie74, CG91, WW92, HKD93]:
Suu * Suu + 251“1 * Suw + Sypu va)

af
E:/ + dudv.
ﬁ(su'su‘i’qu'Sv‘}'Sv'Sv)

26

2.5. Optimal shapes: variational curves and surfaces DRAFT: June 28, 1995 - 04:19

Figure 2.9: Surfaces that minimize a linearized strain energy functional can still have un-
pleasant shapes, because of mismatches between constraint parameterizations and the sur-
faces’ actual metric. For the surfaces on the left and the right, a constraint curve has been
added and then moved, each to a similar final position. What differs is the set of (u,v)
surface coordinates associated with these constraint curves. The surface on the right suffers
a serious shape defect as a result of parametric “twisting” (the bottom image is of this
surface rotated to show its other side). 27

DRAFT: June 28, 1995 - 04:19 Chapter 2. Previous Work

Figure 2.10: Surface points and normals used in the co-circularity potential.

This approximation has drawbacks similar to the those of the corresponding curve func-
tional, this time when surface areas don’t match a uniform scaling of their parametric areas.
This can happen if interpolation points are poorly parameterized, or if the surface begins
with a reasonable parameterization but is unevenly stretched in the course of re-shaping by
the user, as illustrated in Figure 2.9.

Higher-order surface fairness functions

Thin plate energies, which use 1st and 2nd order information, are not the only possible
fairing functions, or even the best. As with curves, these functions concentrate curvature
near patch boundaries. Moreton[Mor93] proposed a fairing function that measures the
variation of principal curvatures over the surface:

dlﬁ)l 2 dﬁg 2
= [(G + (A
where the é; are the principal directions associated with the principal curvatures ;. Because
of the explicit appearance of principal directions in this objective, it is a much more compli-
cated function than its curve counterpart, and a delicate numerical optimization is needed
to compute finite-element approximations of its minimizers. The method yields surfaces
with an even distribution of curvature throughout, whose shapes seek circular or straight-
line cross-sections. These are visually superior to surfaces produced by other published
schemes, on a wide variety of interpolation problems.

Related but simpler is the co-circularity potential used in Szelizki, el al.’s oriented parti-
cle systems[ST92]. It takes position and normal vectors from two nearby points on a surface
(Figure 2.10), and measures the deviation of their average direction from the normal “be-
tween” them:

V(py,n1, Py, m2) = (01 +m2) - (py — py)) w(||py — Pall),

where the p; are positions, n; are normals, and w(r) weights the potential by the distance
between the points. This potential is 0 for points on the surface of a sphere, and at umbilic

28

2.5. Optimal shapes: variational curves and surfaces DRAFT: June 28, 1995 - 04:19

points on any surface. Unlike Equation 2.5.2, it is not 0 for cones, cylinders, or tori, because
it demands that curvature be the same in all directions rather than teasing apart the surface
curvature into its principal components and treating them separately. Szeliski includes a
finite-element analysis of its behavior in [ST91], in which he shows that, for small deflections
of a surface element represented as a graph of a function f (s(u,v) = (u,v, f(u,v)), the
co-circularity energy over the element is approximated by

Ex / /fguu + 32, +3f5, + [2, dudv.

This is simply a 3rd-order analog of Equation 2.5.2, and the same caveats hold in applying
this parametric “curvature variation” measure as an objective function.

Minimal surfaces, mean curvature, and the Laplacian operator

A different class of geometric fairing function uses the notion of a minimal surface, a surface
interpolating a given boundary curve with the minimum possible surface area. The physical
analogy here is to a soap film stretched between wire loops. Such films take on graceful
free-form shapes in interpolating their given boundaries. The fundamental result in the
theory of minimal surfaces is that their mean curvature, H = 51%2, is everywhere 0, a
straightforward exercise in the calculus of variations (see Spivak[Spi79c] for a discussion of
the history of minimal surfaces in analysis).

As it happens, the published fairing approaches based on minimal surfaces are both
point-based unstructured mesh schemes — a departure from our discussions so far, since we
have focused on fairing functions formulated with respect to smooth surface patch parame-
terizations. Delingette, et al[DWS93] make a geometric approximation to mean curvature
over a mesh with hexagonal topology. Fairing a mesh with this geometric objective requires
an iterative nonlinear optimization to drive an initial mesh to a final minimum shape.

As with elastica there is also a straightforward parametric (linearized) approximation
of mean curvature. It can be shown[O’N66] that mean curvature is given by the average of
the curvatures measured in any two orthogonal tangent directions at a point on the surface,
not just the principal directions. Thus, given an orthonormal u, v coordinate system at a
point on a surface, the condition of 0 mean curvature is described by the well-known Laplace
equation:

Suu + Syy = 0
By integrating the square of the Laplacian sy, +s,, over the surface one obtains a quadratic

objective function. This is perhaps as good a rationalization as any for Mallet’s proposed
mesh “roughness” criterion[Mal89]:

E=(v- Z:vi/n){‘),

where v° is the center vertex of a mesh neighborhood and the v* are the neighbor vertices.
When this is applied to a rectangular mesh, it reduces to the finite-difference form for the
squared Laplacian.

What seems to have been missed in using minimal surfaces for fair surface design is
that they only make sense in situations where interpolation constraints occur along fixed

29

DRAFT: June 28, 1995 - 04:19 Chapter 2. Previous Work

boundary curves rather than at interior points. Your physical intuition about soap films
should tell you that if interpolation points or curves are present in the interior, the mem-
brane will happily crease or corner at these places. Likewise, it should be clear that one
cannot directly control the orientation of the tangent plane at a point or along a curve in a
membrane, as is possible with elastica (see the “tangent ribbon” discussion below). In fact,
such membrane interpolation problems are standard examples of variational problems for
which no smooth solutions exist[CH37]. It is not entirely clear why approaches based on
minimal surfaces have actually demonstrated smooth interpolation of interior constraints.
It seems safe to say that such “smoothness” must ultimately be due to approximation error.

2.5.3 Constraints

Constraints are used in variational shape specification to impose explicit control over some
aspect of the shape — that it interpolate a particular point or curve, maintain tangency
to some other object at a point, etc.. Nowacki[NLL90] surveys a variety of geometric
constraints for design in conjunction with piecewise polynomial curves and surfaces. He
considers local interpolation constraints involving interior points, endpoints, and tangent
ribbons at surface patch boundaries; and global integral constraints such as surface area
or volume. Similar local constraints, and also a general curve interpolation constraint are
considered by Celniker and Welch in [CW92]. All this work uses parametric curves and
surfaces, and the constraints themselves are parametric, formulated with respect to the
natural parameterization of the curve or surface:

Point constraint on surface:
(s(uo, vo) — X0)2 =0,

where Xj is a fixed point in space, and s(ug, vg) is a point on the surface with fixed u, v
coordinates ug, vg.

Curve interpolation constraint:

[(su(®),0) = (vt = 0,

where the parameter ¢ and the surface curve (u(t),v(t)) associate points on s with points
on the constraint curve ¢(t). It is common to refer to the parametric coordinates (u(t), v(¢)
and (ug, vo) as material coordinates, as if (u, v) grid lines were painted on the “material” of
a deformable curve or surface. Figure 2.9 illustrates these constraints applied to a surface
patch.

This need for material coordinates is an artificial constraint if one wants to specify
merely that some point on a curve or surface coincide with a fixed point in space, or that a
surface should contain a given space curve along some cross-section within a given region.
As we discussed earlier, having “good” material coordinates for constraints is especially im-
portant when computing shape approximations. Chord-length constraint parameterizations
are often used to address this issue for static data fitting; but clearly the approximation
can become arbitrarily bad if these interpolation points are used as shape handles and
manipulated by the user after being assigned fixed material coordinates.

30

2.5. Optimal shapes: variational curves and surfaces DRAFT: June 28, 1995 - 04:19

Ideally, the material coordinates of the interpolation points would remain free, much like
physical splines are left free to slide within their positioning ducks to a minimum energy
shape. Something like this was considered for scattered data fitting using curves (interpo-
lation constraints but no shape optimization) by Hoschek[Hos88, HSW89] and Sarkar and
Menq[SM91], and for surface fitting by Plass and Stone[PS83] and Rogers and Fog[RF'89].
The technique has been referred to as “parameter optimization,” because one ends up com-
puting an optimal set of material coordinates for the interpolation points such that overall
fitting error is minimized. We’ll refer to such parameterless constraints as nonparametric
interpolation constraints.

Curve and surface tangent vectors may be constrained with formulae similar to Equa-
tion 2.5.3, using parametric derivatives of the curve and surface functions. These allow tan-
gent ribbons to be controlled along the edge of a surface, and may be used to “stitch” curves
or surfaces together smoothly by matching derivatives along a shared boundary. They are
known, not surprisingly, as parametric continuity constraints[Far90], with nth-order para-
metric continuity typically designated C™ in CAGD literature. A more general continuity
condition uses geometric rather than parametric quantities, and is therefore known as ge-
ometric continuity[DeR90]. As an example, first-order (G'!) geometric continuity equates
normal vectors along a shared boundary:

G! surface continuity constraint:

/ (N(s1(u1(t), v1(t))) = N(s2(u2(r(t)), va(r(t)))))*dt = 0, (2.6)

where
N(s(u,0)) = (2
u v

s1 and sy are surfaces intersecting along their respective parametric curves (u,vy) and
(u2,vz), and r(t) is a reparameterization of (uz, vz) such that ¢ identifies coincident points
on both surface curves.

Lastly, there are the so-called integral constraints, such as constraints on the area con-
tained in a closed planar curve, area of a bounded surface, or volume contained within a
closed surface:

Surface area constraint:
/Hsu X sy||dudv = Ay
S

These are geometric constraints, as the area of a surface, or contained volumes, do not
depend on the particular parameterization used in performing the integration.

Applying constraints

In applying any of the constraints we have been discussing to a particular surface represen-
tation, as when computing an approximation to a constrained variational surface, it may
happen that the given representation cannot exactly satisfy the constraint. For example,
if a polynomial surface patch is constrained to interpolate a circular arc, the interpolation
cannot be exact. Generally, one must be satisfied with minimizing constraint error, e.g.in
the least-squares sense, rather than satisfying constraints exactly.

31

DRAFT: June 28, 1995 - 04:19 Chapter 2. Previous Work

For parametric constraints — involving fixed material coordinates for point or curve
positions and parametric derivatives in fixed directions — a least-squares formulation of
the constraint leads to a quadratic minimization problem. As with the linearized objective
functions of the previous section, this yields a set of linear constraint equations to be solved
for a zero error gradient. The problem of minimizing a quadratic objective subject to
linear equality constraints is a straightforward numerical optimization problem, requiring
the solution of a single linear system, assuming a linear curve or surface representation is
being used.

There are any number of approaches to setting up and solving this system[PTVF94,
GVL89, LH74, MS78, GMWS81]. Perhaps the simplest directly combines the constraint
error with the shape objective as a penalty term to be minimized[WW92, MS92]. The
drawback with penalty approaches is that the constraints must compete with the objective,
and thus will not generally be satisfied exactly. One must heavily weight the constraint
error to increase its dominance over the objective terms, and this can lead to badly condi-
tioned equations|GVL89]. There are several approaches that enforce constraints exactly. In
some curve and surface representations, constraints are “built in” so that they cost nothing
to enforce, as with parametric continuity constraints for B-splines (below), or control-point
interpolation constraints for Catmull-Rom splines (below). Linear constraints can also en-
forced by constraint reduction[GMW81], in which a matrix is computed that transforms the
original constrained representation parameters into a smaller set of unconstrained parame-
ters for which the constraints are built-in (see [Cel90, CW92] for applications to curve and
surface fairing). Finally, the technique of Lagrange multipliers[Str86], which augments the
representation parameters with additional degrees of freedom, one per degree of constraint,
has also been used to enforce parametric interpolation and tangent constraints[WW92].
We will use constraint reduction and Lagrange multipliers in the approximation scheme of
Chapter 5.

For geometric constraints, things are a good deal more complicated numerically because
the constraints are typically nonlinear. For nonparametric interpolation constraints, there
will be material coordinates for the interpolation points, and these must be left free to vary.
That means gradients of the constraint error with respect to these material positions inherit
the nonlinearity of the curve or surface position function. To make this distinction between
the linearity /nonlinearity of parametric/geometric interpolation constraints clearer, con-
sider a general linear parametric curve C'(¢), which by definition may be written as a linear
combination of parametric basis functions B(¢):

C(t) = Z OziBi(t),

where the subscripts refer to the ith element of the set (this form will be discussed in more
detail in the next section). The position of the curve at a fixed parameter value ¢y is a
linear function of the «;. The position of the curve as ty varies is typically a nonlinear
function, since the basis functions B; are typically nonlinear in their parameter t. If we
formulate error or objective gradients with respect to free ¢t parameters rather than the «;,
they pick up this nonlinearity. Such constraints cannot generally be solved directly, but
must be satisfied by iteratively minimizing constraint error.

Geometric continuity conditions suffer a different kind of nonlinearity, arising from their
use of vector cross-products and division by vector magnitudes to produce unit vectors

32

2.5. Optimal shapes: variational curves and surfaces DRAFT: June 28, 1995 - 04:19

(Equation 2.6). Additionally, there are corner compatibility conditions that must be sat-
isfied where multiple patches meet at a single vertex[Pet91]. Essentially, all surfaces must
meet at a 2nd-order smooth neighborhood at such a node if their 1st-order cross-boundary
derivatives are to be compatible. It is most common to directly construct surfaces that
satisfy these constraints ([SS87, Pet91, DeR90, LD90]). But combining such a construc-
tion with a global surface fairing scheme is daunting because the constructions typically
over-constrain the surface in the name of definiteness, leaving few if any degrees of freedom
available to minimize the objective (subdivision surfaces being a notable exception[HKD93],
discussed below). It will generally be more practical and productive to satisfy such con-
straints through iterative relaxation[MS92] of an under-constrained surface.

2.5.4 Linear curve and surface representations for approximation

Several times in the previous discussion we have made reference to linear curve and surface
representations as being desirable for approximating variational shapes. Such a curve or
surface can be written as a linear combination of a set of parametric basis functions:

C(t) = Z o;b; (t),

or

s(u,v) = Z a;bi(u, v),

where the subscripts indicate the ith element of the set. There are a variety of repre-
sentations in use in CAGD that satisfy this definition. We’ll not go into any real detail,
beyond discussing a few broad classes of basis functions — see Farin[Far90] for a survey
of the mathematical particulars. Here we are interested in how linear curve and surface
elements can be pieced together into piecewise smooth composites, and ultimately be used
to approximate variational shapes. It worth mentioning at this point that we will not be
using any of the piecewise smooth schemes discussed here; but we’ll need this background
in explaining our choices later.

Polynomial curves

Perhaps the most commonly used basis functions are univariate polynomials — B-spline,
Bezier, Catmull-Rom, or the simple monomial functions (1,¢,¢2,¢3,...). Though all generate
polynomial curves, their a; have different geometric meaning as points distributed on or
about the curves, and are referred to as control points (except for the monomial’s «;, which
are simply polynomial coefficients). The number of control points in a curve segment is
always one more than the polynomial degree of the curve, just as a degree-n polynomial
has n — 1 coeflicients. As Figure 2.11 illustrates, B-spline and Catmull-Rom curve segments
can be chained end-to-end to make piecewise smooth composites by sharing control points
between neighboring curve segments. These are “built-in” parametric continuity conditions.
Geometrically continuous composites may be built up by construction, or by setting up
and solving continuity-constraint equations between (no longer shared) control points of
neighboring segments. Piecewise smooth Bezier curves or blends of monomial curves, with
either parametric or geometric continuity, must be built by construction or though explicit
constraints. There is no analog to control-point sharing here, although, given that we are

33

DRAFT: June 28, 1995 —04:19

Chapter 2. Previous Work

-

P T T L L b e ""':1.
L -

Figure 2.11: Polynomial curves: cubic Bezier (dashed), Bspline (solid), and Catmull-Rom
(dotted) spline segments are computed for the same sequences of control points. Each cubic
segment uses 4 successive control points, so the 6 control points yield sequences of 3 curve
segments. The three Bezier curve segments are discontinuous. The three Catmull-Rom

and B-spline segments are C! and C? continuous, respectively, because of control point
sharing.

more interested in geometric continuity constraints, the Bezier and polynomial forms are
simpler to work with in setting up the constraint equations.
Polynomial surfaces

Linear surfaces may be built up from such univariate basis functions through the tensor
product operation:

s(w,v) =3) aijbi(w)b;(v),

where «;; is now a 2D rectangular array of control points. As with the 1D forms, these
patches can be stitched together into parametrically continuous sheets by control point shar-
ing (B-spline, Catmull-Rom), or by constraints or direct construction (Bezier, monomial).
Unfortunately, because patches are rectangular and can only be joined into rectangular
meshes (4 patches must meet at each interior vertex), the only topologies possible with sim-
ple parametric continuity conditions are sheets, cylinders, and tori. More general topologies
require interior vertices where more or fewer than 4 patches meet smoothly, or the use of
other than 4-sided patches (i.e., by collapsing an edge of a patch control mesh to create a
“triangular” patch). Both approaches introduce degeneracies into the relationships between

34

2.6. Interactive variational shape design DRAFT: June 28, 1995 - 04:19

partial derivatives at the shared vertices, and cause the parametric continuity condition to
break down. The smoothness of such neighborhoods must be ascertained using geometric
continuity conditions.

Other linear surface patches do not rely on the tensor-product construction, but are in-
stead use true 2D basis functions. Most widely used are Bezier triangles[Far90], a triangular
generalization of the Bezier curve construction. Triangular patches are more convenient than
rectangular ones for constructing nontrivial surface topologies, and the complexity of main-
taining geometric continuity constraints or evaluating a geometric objective is essentially
the same for both.

Subdivision Surfaces

A subdivision surface is defined, not as an explicit parametric function, but rather as
the limit of repeated refinement of an initial control mesh[Doo78, CC78, Loo94, HDD*94].
The resulting surfaces are smooth, can be of arbitrary topological type, and are linear in the
initial mesh vertices (though, like their B-spline cousins, they do not directly interpolate
these points). It is possible to describe these iterated subdivision steps as repeated appli-
cations of a particular linear transformation to the patch control points, and to analyze the
limit behavior of the iterated transformation to determine the ultimate locations of surface
points and normals corresponding to the original mesh vertices. (see [HKD93]).

Work on global shape optimization with subdivision surfaces is very recent. Hoppe,
et al.[HDDT94] attract such a surface to an unorganized set of points, minimizing the
difference between limit positions of surface points and nearby data points. Halstead,
et al.[HKD93] compute fair Catmull-Clark subdivision surfaces by minimizing the paramet-
ric thin-plate functional of Equation 2.5.2. The difficulty here is in evaluating the integral
(recall that there is no explicit parametric equation for the surface). They show how to
compute the integral and necessary derivatives analytically, by analyzing the eigenstructure
of the subdivision matrix. It is not quite clear what it means to minimize such a parametric
function over a composite, geometrically continuous (but not parametrically continuous)
surface. It would appear that the objective function measures the interior of each patch
independently, and any fairness across patch boundaries is a side-effect of coupling between
vertices shared by neighboring patches.

2.6 Interactive variational shape design

Having discussed the variety of approaches to the individual components of a variational
shape specification and its subsequent approximation, we’ll now look at the several in-
teractive variational shape design approaches[Cel90, Kal93, WW92, BBR9, Fow92]. Here
we are interested in approaches that compute their surface approximations in real time,
as the user interacts with the variational specification by modifying constraints. All the
approaches considered here make similar choices from the constraint, objective, and repre-
sentation menus above. All constraint and objective functions are parametric, rather than
geometric.

Bartels’[BB89] and Fowler’s[Fow92] approaches allow point interpolation constraints on
B-splines, but minimize no explicit fairing function. However, it is easy to show that
their constraint solution technique minimizes the RMS displacement of points on the curve

35

DRAFT: June 28, 1995 - 04:19 Chapter 2. Previous Work

from their initial positions to their final positions. Celniker[CG91], Kallay[Kal93], and
Welch[WW92] use the fairing function of Equation 2.5.2, and all use linear C* and C? con-
straints to stitch patches together (with the exception of Celniker[CG91], whose triangular
patches allow almost-everywhere G continuity). All offer point interpolation constraints

with fixed material coordinates. Additionally, interactive curve position and tangent ribbon
constraints on surfaces are developed in [CG91, CW92, WW92].

In every case, the choices of parametric functions over more versatile, higher quality
geometric ones were motivated by two needs: the need to have a numerical optimization
problem that could be solved at interactive speeds, and the need for robust numerics in
the face of user interaction. Both of these needs are satisfied because the parametric for-
mulations yield linearly constrained quadratic minimizations, whose solutions can be found
by solving a single large linear system in a single step, rather than through iterative min-
imization as is required for nonlinear geometric schemes. And the solutions can be found
relatively quickly: as long as no new constraints are added or old ones deleted, and as long
as the representation’s refinement is not changed, the matrix associated with the linear
system remains constant; thus, it can be factored once, and thereafter used to solve for
new surface shapes as the designer changes constraint values (e.g., by moving a control
point)[CGI1, Fow92, CW92, WW92]. Because the solution can be found directly, it not
necessary to construct a good initial guess at the solution prior to iterative minimization
in order for the solution to converge. This in turn means that it is safe for the user to
interactively reposition constraints while the solver is running without fear that the mini-
mization process will be destabilized. Having the user’s interactions with the shape specifi-
cation out-pace an iterative solver’s ability to keep up can be a real problem for interactive
systems incorporating nonlinear optimization. In such approaches, there is an implicit de-
pendence on the user to change parameters smoothly and at an appropriate rate, relying
on visual feedback as the solution evolves to judge how quickly changes can reasonably be
made[WGWO90, GWI1, Gle94].

The shortcomings of parametric constraint and objective functions were outlined pre-
viously. These problems are even more pronounced in an interactive modeler, where the
user may severely distort a surface region while tugging on control points or curves. The
designer is forced to think of the surface in terms of fixed material coordinates, and be
careful not stretch the surface nonuniformly. This is exacerbated by the requirement that
linear constraints also be expressed in material coordinates, preventing the surface from
“sliding” across control points and curves to achieve fairer shapes. Finally, recall that those
interactive modelers that rely on tensor-product surfaces[Kal93, WW92, BB89, Fow92] are
incapable of representing topologies other than sheets, cylinders, and tori. In summary,
current interactive schemes, though fast and stable, use simplified formulations that suffer
a variety of difficulties due to their dependence on an underlying surface parameterization.

2.7 Triangulated surfaces

The surface modeling approach we develop in the next few chapters does not use smooth
parametric patches as its basic representation, but rather, discrete points connected in a
surface mesh. In the previous section, we mentioned some earlier mesh-based surface fairing
schemes ([Mal89, DWS93]). In this section, we will review some lower-level issues involved

36

2.7. 'Triangulated surfaces DRAFT: June 28, 1995 - 04:19

in computing with meshes: how to estimate smooth quantities such as curvature at node
vertices.

If mesh is to be treated as an approximation to smooth surface, we need to be able to
estimate smooth quantities such as curvature and normals over the mesh. Simple, standard
approaches to estimating gradients (tangent planes) for scattered data[Law77, Aki84, Ste84,
Fra82, She68] are not adequate for our purposes, as they assume all points are referred to
a single global u, v parameterization. They take as input a collection of data point triplets
(u;, vi, f;) and at each point compute gradients of a surface s(u, v) = (u, v, f(u, v)) by fitting
some functional form for f to the point and its neighbors. The functions used (e.g., planes,
quadratics[Fra82], Shepard’s surfaces[She68], and others) and the method of deciding which
points are in a given point’s neighborhood distinguish these methods from each other, good
surveys being Nielson and Franke[NF83, FN90].

Approaches that can be applied to true 3D data are somewhat rarer. Any of the para-
metric surface fitting approaches discussed in Section 2.4 might be used within a mesh face,
but these methods are either inappropriate or are overkill for estimating smooth quanti-
ties at mesh points only. We consider here a number of geometric and parametric fitting
schemes for approximating gradient (normal field) and curvature information at 3D surface
mesh vertices.

2.7.1 Mesh surface normals

Perhaps the most widely used approach to computing a surface normal at a mesh vertex
takes an area-weighted average of the normals of the faces incident at the point (e.g.,[Ham93,
MS92, Tur92, SZL93]). Variations on this idea use different weightings, e.g., Akima’s inverse
area weighting [Aki84].

One may instead solve for the normal to a plane that best fits the points in a nearby a
neighborhood, as in Hoppe, et al.[HDD'92]. This is a standard linear regression technique,
in which a set of neighborhood points Nhd and a given “center” point ¢ one forms the 3 x
3 covariance matrix

S= > -oly—-o,

YENhd

The smallest eigenvalue of S is the normal to the plane passing through ¢ and best-fitting
the points of Nhd.

2.7.2 Mesh curvature

Perhaps surprisingly, it is possible to compute the Gaussian curvature at a surface mesh
node exactly. Maxwell[Max54] originally observed that the Gaussian definition of intrinsic
curvature by means of spherical projection[Huf75] readily applies to polyhedral surfaces.
Because the faces are flat and edges straight, all the intrinsic curvature must be concentrated
in the vertices themselves, and it can be shown (by spherical projection) that the Gaussian
curvature K at a vertex is

K=—, (2.7)

=

37

DRAFT: June 28, 1995 - 04:19 Chapter 2. Previous Work

Figure 2.12: The Gaussian curvature x at a polyhedral vertex is the “excess angle” when
the neighborhood is flattened out, scaled by the neighborhood surface area.

where (3 is the solid angle of the vertex and A the area associated with the vertex (1/3 the
area of each of its triangles). It can also be shown that 3 is 27 minus the sum of the vertex
angles of its triangles (Figure 2.12).

In dealing with surface shape, extrinsic (geometric) curvature measures will be more
useful than the intrinsic Gaussian curvature. Turk[Tur92] estimates the radius of curvature
at a node by first estimating a normal at the node (face averaging) and then for each
neighbor computing the radius of the sphere tangent to the line connecting the point and
neighbor, and having its center on the normal ray from the point. The minimum of these
radii is taken as the minimum radius of curvature at the node. Delingette, et al.[DWS93]
fit a sphere to a tetrahedral neighborhood (all nodes are degree 3 in their meshing scheme),
and claim to estimate mean curvature as a function of various relationships between the
neighborhood tetrahedron and this sphere. Koenderink[Koe90] points out that the mean
curvature for polyhedral surfaces can be determined exactly: just as Gaussian curvature is
concentrated at the vertices, mean curvature is concentrated in the dihedral angles of the
facet edges.

Estimates of smooth surface behavior at a mesh point are possible through the use
of parametric fitting. Sander and Zucker[SZ90] and later Hamann[Ham93] present similar
parametric fitting schemes for approximating principal curvatures at mesh nodes (and from
them the gamut of intrinsic and geometric curvature measures). First, the mesh neighbor-
hood is projected against an estimated surface normal at the neighborhood center (Sander
and Zucker obtain this normal as the gradient of 3D volume data, Hamann by averaging
triangle face normals). This yields a local parameterization for the neighborhood points,
and after expressing a mesh neighborhood as a height-field with respect to this tangent
plane a bivariate quadratic function is fit (essentially as in Lawson[Law77]). Analysis of
the derivatives of this fitted function yields the desired gradient and curvature information.
Stokely and Wu survey a variety of related local parameterization approaches in [SW92].
We will use a similar fitting technique in Chapter 5, and so defer further numerical details
until then.

The construction of a separate parameterization in order to fit a smooth function to
a mesh neighborhood seems an extra step of mathematical indirection. We experimented
with fitting algebraic functions (3D quadrics) to mesh neighborhoods as a way of estimat-

38

2.8. Computational mesh generation DRAFT: June 28, 1995 - 04:19

Figure 2.13: Topological pitfalls with algebraic neighborhood fitting. When fitting a
general quadric, we have no reasonable way to build the desired topology into the fit, and it
is quite possible to end up with topology mismatches. (Only curve fitting is demonstrated
here, but the generalization to surfaces is clear.)

ing derivatives without parameterizations, a straightforward generalization of the implicit
fitting techniques described by Bookstein[Boo79] and Pratt[Pra87], which are in turn gen-
eralizations of the linear regression technique discussed above. The drawback with an
algebraic fitting approach is that there seems to be no inexpensive way to build topological
constraints into the fit that would prevent algebraic projection onto the quadric surface
from scrambling the neighbors’ radial order (Figure 2.13). Worse, we noticed that in the
case of nearly flat neighborhoods, the fitted quadric was often a hyperboloid of two sheets,
with some samples on one sheet and some on the other. The only cure for this two-sheet
problem is to put a nonlinear constraint on the discriminant of the quadric. This leads
to an expensive iterative solution procedure rather than the direct eigenvalue computation
above, and makes the technique impractical to use in our interactive modeler.

2.8 Computational mesh generation
An important part of our surface approximation scheme is mesh generation and mainte-
nance — keeping mesh nodes distributed and triangulated so as to yield well-conditioned

computations. We review here traditional grid generation approaches, and more recent
work in surface sampling and triangulation.

2.8.1 Continuum grid generators and Laplace’s equation

Numerical grid generation techniques were originally developed within the scientific
computing community for the solution of partial differential equations over physical fields

39

DRAFT: June 28, 1995 - 04:19 Chapter 2. Previous Work

2.8. Computational mesh generation DRAFT: June 28, 1995 - 04:19

smooth coordinate maps (Figure 2.14). Its effect is easiest to explain for a 2D Cartesian grid,
where we may consider two coordinate systems: the fitted curvilinear coordinate system u, v
representing the regular computational domain, and the orthogonal z,y coordinate system
in which the irregularly shaped physical domain is situated. Taking for the moment the
(u,v) coordinate lines as functions of (z,y), the Laplacian grid generation system is

Ugg + Uyy = 0, Upz + vyy = 0.

Grids satisfying these equations tend to have uniform spacing away from irregularly shaped
boundaries. In fact, an easy way to derive these equations is as the solution to a variational
problem asking for minimum variation in coordinate spacing over the grid, an approach

introduced by Brackbill and Salzman[BS82].

The Laplace system and associated variational equations for an unstructured triangle
mesh in the plane are more involved, as we no longer have a single pair of (u,v) coordinate
functions covering the physical domain. We will consider this in more detail in conjunction
with our surface meshes in Chapter 6. We will be lead to generalize a time-worn approxi-
mation to the Laplacian grid system known as Laplacian smoothing[Fie84], in which nodes
are iteratively moved towards the centers of their mesh neighborhoods until the distribution
reaches equilibrium.

2.8.2 Surface meshes: node placement

Most of the attention in continuum grid generation literature is given to grids for 2D planar
domains and 3D solid domains. Much less is said about gridding surfaces embedded in
3D, and this is certainly not helped by the unpleasant differential geometry that comes
into play (see, e.g., Warsi|War86, WT90] for a true debauch of indices). More recently,
mesh generation for unstructured surface meshes has become active topic in computational
geometry, computer aided design, and computer graphics communities. The interest here is
in representing free-form surface geometries in terms of polygonal meshes — either for the
pure shape representation aspect, or as a computational mesh for subsequent finite-element
computations. The general approach has been to first place sample points on a surface and
subsequently connect them into a surface mesh.

There are a number of schemes for establishing a fixed sampling of a surface, including
random placement|[Cav74], spatial subdivision methods[SZL93], or incremental “Steiner”
point placement as part of a mesh improvement scheme[Che93]. We will not be inter-
ested in such static sampling schemes, because our interactive application will demand a
sampling approach where point positions can vary continuously as the underlying surface
changes smoothly. The near-universal time-varying approach to distributing sample points
over surfaces of arbitrary topology uses the notion of point repulsion[RA82, Tur91, SG92b,
dFGTV92, SBG93, WH94, Tur92, ST92]. Points are distributed over a physical domain by
iteratively relaxing a pairwise repulsive “force” they exert on one another, inversely related
to their spatial separation. At equilibrium, the points are evenly spaced over the domain.
An attractive feature of this approach is the ease with which underlying features of the
surface (such as curvature) can be used to control the local density of sample points and
thus achieve a more eflicient sampling.

41

DRAFT: June 28, 1995 - 04:19 Chapter 2. Previous Work

Figure 2.15: The planar Delaunay triangulation (dashed lines) is the dual of the Voronoi
diagram (solid lines) of a set of points. The triangulation can be built by putting an edge
between any two points whose Voronoi cells touch.

A difficulty with using point repulsion to control a dynamic surface mesh (as opposed to
just sampling a surface) is that, unlike the continuum schemes, there is currently no robust
way to maintain a surface triangulation over the point set as it evolves. If the triangulation
is fixed, nothing prevents the mesh from from folding back on itself as points move about on
the surface, and there is no penalty serving to undo such folds where they occur. Although
the incremental re-triangulation techniques discussed below can go a long way towards
preventing such folds from occurring, we shall see that they are stymied when a fold is
accidentally introduced. Instead, current point repulsion schemes impose a triangulation
over their points a-postior: in a variety of ways once they reach equilibrium positions. We
will consider how such surface meshes might be erected over point sets after a brief detour
to discuss the special case of planar triangulations.

2.8.3 Quality meshes in the plane: the Delaunay triangulation

The problem of constructing a triangulation over a set of points in the plane has been
well-studied, and algorithms exist that yield triangulations optimizing a variety of quality
measures. Bern and Eppstein’s excellent survey [BE92] covers much of the work from within
the computational geometry community for the planar triangulation problem. Perhaps the
most celebrated results involve the Delaunay triangulation (DT), a triangulation having
qualities that make it particularly desirable as a computational mesh over a set set of pla-
nar vertices. The DT maximizes the minimum included angle over the triangulation, and
thus eliminates skinny triangles whenever possible, which improves the conditioning of com-
putations over the mesh. Because of its dual relationship with the Voronoi diagram[For92]

42

2.8. Computational mesh generation DRAFT: June 28, 1995 - 04:19

J N J \

Figure 2.16: Construction of the planar Delaunay triangulation through iterative edge-
flipping. The highlighted diagonal on the left is “reversed” within its quadrilateral. Flipping
the edge reduces the maximum included angle, and restores the DT (right).

(Figure 2.15), the neighbor relations assigned by the DT yield an even partitioning of the
plane in terms of nearest neighbor distances and relative triangle areas. There are a number
of ways of constructing the (unique) DT over a set of points. One which will concern is in
Chapter 6 takes advantage of the DT’s max/min angle property to incrementally restore a
DT from some sub-optimal triangulation through a series of edge-flips|BE92] (Figure 2.16).
we will consider a generalization of this algorithm to polyhedral surfaces.

Though our ultimate interest is in a general surface triangulation, there is some re-
lated mesh generation work for the special case where a surface is erected over a single
parameter plane. Here the planar DT may be used to triangulate the surface with respect
to this parameterization. As an example, in the surface meshing scheme of Shimada and
Gossard[SG92b, SBGI3] (see also Fang and Gossard[F'G92]) a point repulsion relaxation is
followed by construction of a DT within the parameter plane. The price of simplicity here
is that such an approach is not applicable to surfaces of arbitrary topological type.

2.8.4 Unstructured surface meshes: triangulating 3D point sets

As thoroughly solved as the planar triangulation problem may be, the situation is not
nearly so rosy for general surface triangulations. The problem of taking a set of 3D points
representing a sampling of some surface, and returning a triangulation of that surface is
under-specified: unlike the planar case, a unique topology for the surface is not determined
by the points, nor can a specific topology generally be imposed on a triangulation process
(beyond the spherical topology recovered by a convex hull construction). This aspect of
surface triangulation is pointed up by Edelsbrunner’s alpha shapes[EM94], a generalization
of the convex hull construction that enforces a maximum allowed edge-length (the so-called
« parameter). For @ = oo, the alpha shape is just the convex hull. For o = 0, the alpha
shape is the point set itself. Values in between allow the hull to “shrink-wrap” the point
set ever tighter as the parameter decreases, resolving concavities and associated fine detail,
even allowing enclosed volumes to split into disconnected pieces. A wide variety of surface
topologies may systematically recovered from the same point set by varying this parameter.
It should be noted that alpha shapes are tetrahedralizations of the space in and around a
3D point set, rather than a direct surface construction; there is no way to force all the given
points to lie on the surface of the constructed alpha shape.

43

DRAFT: June 28, 1995 - 04:19 Chapter 2. Previous Work

Szeliski, et al.[STT93] impose an a-postiori triangulation on their oriented particle sys-
tems by generalizing the empty circumcircle definition of the planar Delaunay triangulation[BE92]
They look at at triangle circumspheres — the smallest sphere containing the three vertices
of a given triangle, and only include the triangle in the mesh if the circumsphere is empty.
We will look more at circumcircles on curved surfaces in Chapter 6. For now, it is enough to
say that this “smallest sphere” test yields inconsistent results in highly curved, irregularly
sampled neighborhoods, and thus cannot be relied upon to associate a unique triangulation
(or surface topology) with a given point set. Chew[Che93] has developed a provably con-
sistent generalization of the Delaunay triangulation to surfaces[Che93] that also relies on a
local flatness assumption, also to be discussed further. It is not appropriate here because it
requires a valid initial surface triangulation, which it iteratively improves until the surface
DT definition has been satisfied. Finally, Szeliski, et al.’s construction includes a maximum
edge length parameter, analogous to that of alpha shapes. It allows tears and holes to
appear in the mesh as points move farther apart, which is a feature in their particle-based
approach to recovering surface topology from unstructured CT or range data, but would
be inappropriate in a modeling system that must maintain fidelity to a particular surface
topology.

Hoppe, et al.’s surface reconstruction scheme[HDD92] may be the most successful to
date at moving from an unorganized 3D surface point set to a triangulated surface. But it
doesn’t actually triangulate the given point set; rather, it uses the points to fit a collection
of tangent planes, constructs a signed surface distance function from their union, and then
triangulates a contour of this distance function.

What we take away from all of this is that, if we care about maintaining a particular
surface topology as recorded in a mesh, it is not safe to discard the triangulation and then
re-triangulate starting from the point set alone. In the next section we consider “topology-
safe” schemes for re-triangulating a point set given an initial triangulation.

2.8.5 Unstructured surface meshes: transformation and optimization

A number of schemes for re-triangulating a given surface mesh in a topology-safe manner
have been put forward. Turk’s polygonal surface re-sampling scheme begins with a polygo-
nized surface, scatters points over the surface, and re-triangulates each of the polygons to
include the new scattered points in the polygonization. Nodes are iteratively deleted from
the mesh, and each time the affected neighborhood is re-triangulated by projecting it onto a
plane. This is not a topologically safe thing to do, especially in areas of high curvature; for
this reason, topological consistency checks are performed on the resulting triangulation and
the deletion is undone if it leads to inconsistent results. Similar projections and consistency
checks are involved in Schroeder, et al.’s mesh decimation scheme[SZL93].

Much more satisfying are mesh transformation operations that do not rely on such
“project-check-and-reject” tests, but are instead guaranteed to preserve the global sur-
face topology represented by the mesh. This idea goes back to the topological work of
Alexander[Ale30], who defined the mesh transforms illustrated in Figure 2.17. He shows
that the order-1 moves (edge splitting and its inverse) are sufficient to transform between
any two triangulations of a surface. More recently, Hoppe, et al.[HDD193] made one of
the first principled applications of mesh transformations to the problem of surface mesh

44

2.8. Computational mesh generation DRAFT: June 28, 1995 - 04:19

Order-1 transformations

Order-2 transformations

YAV

Figure 2.17: The Alexander moves. The order-1 moves operate on edges, splitting them to
add nodes and collapsing them to delete nodes. The order-2 moves operate on faces, splitting
them to add nodes or clipping off tetrahedral “corners” to delete nodes. The order-1 moves
are sufficient to transform between any two triangulations of the same surface.

re-sampling and optimization, in the course of reconstructing a surface from scattered 3D
points. They choose sequences of moves that improve the efficiency with which a mesh
represents a given target shape by splitting triangles in areas of high curvature and merging
triangles in flatter areas. In Chapters 4 and 6 we will need topology-safe ways of performing
various bits of mesh surgery — adding and deleting nodes, and inserting p.l curves into a
mesh. We will look to the Alexander moves as our basic transformation primitives, and
build our mesh operations on top of these.

45

DRAFT: June 28, 1995 - 04:19 Chapter 2. Previous Work

46

Chapter 3

Overview

In this chapter we give an overview of our approach to free-form shape design, beginning
with the user’s view. The user is presented with a very simple model for the way surfaces
behave: they may be pinned down at arbitrary points and along curves, all the while
maintaining globally fair shapes or locally copying externally controlled tool shapes. Detail
may be added without limit, through the accumulation of additional control curves and
shape tools. Additionally, surfaces may be cut up and smoothly pasted together along
arbitrary curves, so that complex topologies may be built up from simpler ones.

We’ll start with a construction example that shows what it is like to design a surface
using these tools. We then show how such curve and surface behavior can be precisely
characterized in terms of a simply formulated (if not simply solved) optimization problem.
User-defined control points and curves act as geometric constraints on the possible shapes;
the automatic fairing and shape-copying behaviors are then realized by optimizing the
shapes subject to these geometric constraints. Shapes defined this way are sometimes
called variational shapes [HB91a, HB93], because the resulting optimization problems are
properly stated using the calculus of variations[CH37].

One of the limitations of such a variational modeling approach is that we do not gener-
ally know how to explicitly solve for optimal curve or surface shapes. This prevents us from
operating directly on exact, explicit representations of the variational shapes. Instead, our
modeler will construct approximations to the ideal shapes, continually updating the approx-
imation as the user interacts with the model. In this work, we use piecewise-linear (p.l.)
curves and triangulated surface meshes to build our approximations, instead of the smooth
patches used in previous work, because they simplify certain aspects of our calculations and
allow us to compute approximations interactive speeds.

Even though we can only present the user with approximate renderings of the shape
under construction, the user will be able to create and manipulate these variational shapes
directly and unambiguously, regardless of the coarseness of the approximation. This is
because we will interpret each action by the user as operating on the variational specification,
not the particular approximation that is being displayed.

Ultimately, we will be able to treat this representational and approximation machinery
as a “black box”. This will allow us to build an interactive modeler which operates on
variational curves and surfaces as its basic shape representation, much as a conventional

47

DRAFT: June 28, 1995 - 04:19 Chapter 3. Overview

Figure 3.1: a) A closed curve is created b) the curve is skinned to make a disc. c-d) Two
closed curves are drawn on the disc and elevated e) A hole is cut in center of disc and the
new boundary curve elevated. f) The upper curve is expanded to match the lower. g) Two
boundary curves are skinned to make a single toroidal surface passing through the three
control curves.

modeler might operate on B-splines or Bezier patches. Unlike conventional modelers, this
approach allows us to create and interact with with surfaces of unrestricted, mutable topol-
ogy; add arbitrary amounts of detail; and incorporate a wide variety of convenient shape
controls into a single structured free-form shape.

3.1 The user’s view

We begin with a simple construction example that shows a user’s view of our approach to
creating free-form shapes. In Figure 3.1 a torus is built in a series of simple steps. These
are perhaps not the most straightforward set of steps for specifying such a shape, but in this
example we’re more interested in exhibiting a number of useful tools during the intermediate
stages.

In the first frame, four control points have been placed in roughly a square, and then a
curve created that passes smoothly through them. The designer may re-shape this curve
by moving the original control points, or by grabbing and re-shaping the curve at arbitrary
points in-between (which then become new control points). In the next frame, a surface
has been created that uses this curve as its boundary, yielding a disc. The disc’s shape is
thus indirectly controlled by the control points that shape its boundary curve.

In frames (c-d), a pair of curves are drawn on the surface — again, by defining control
points and connecting them with smooth closed curves, but this time requiring that the
curves be embedded in the surface. When the designer moves or re-shapes these control

48

3.2. Shape design as functional minimization DRAFT: June 28, 1995 - 04:19

curves, the surface follows, always assuming a smooth shape that passes through them. In
frame (e), the interior of the inner curve has been “burned out” to turn the disc into an
annulus with the inner curve now serving as a boundary. This boundary is subsequently
re-shaped (f), and then it and the original boundary are “skinned” with a new piece of
surface that is smoothly joined to the original, creating a closed toroidal surface (g).

3.2 Shape design as functional minimization

In the previous example we spoke of curves that pass smoothly through control points, and
surfaces that pass smoothly through control curves, or whose shapes copy parameterized
shape tools. Such descriptions can be made mathematically precise by interpreting them
as specifications for a shape optimization problem. For instance, the curve in Figure 3.1 is
constrained to pass through its four fixed control points, in a specified order. Subject to
these geometric and topological constraints, it takes on a shape that minimizes an fairness
Junction (Section 2.5.2). The fairness function measures total curvature, and minimizing it
causes the curve to iron out undesirable bulges or wiggles as it redistributes its curvature
over its length. Similarly for surfaces: the surface in Figure 3.1 is constrained to pass
through three control curves. Subject to this geometric constraint, and the topological
constraint that it remain a torus, it also minimizes a curvature-based objective function to
give it a fair shape.

This is an extremely concise way of describing a wide range of free-form shapes. For the
curve above, a handful of control point positions, their topological ordering , and a curvature
objective function are enough to completely determine the shape. Similarly for the surface,
a handful of control curves, a given surface topology, and a surface objective function
determine its shape everywhere. This is very different from what is done in conventional
curve and surface modelers today, where free-form shapes are described as collections of B-
splines, Bezier patches, or other explicit forms. Instead, these shapes are described implicitly
as the solutions of variational optimizations. This abstracts away from the details of any
particular surface representation, and makes it trivial to augment a shape with additional
controls. They are simply stated as additional objective and constraint terms contributing
to the variational form.

Our approach to representing and operating on variational specifications is developed in
Chapter 4 and Chapter 7 (this work is also described in [WW94]). Briefly, a triangulated
surface mesh records the surface topology, while sequences of connected edges record curve
topology. Topological features within it — embedded curves and bounded regions — are
each tagged with a “region controller” telling us whether to copy the region’s shape from
some other piece of control geometry or to solve for a region shape that blends smoothly
with neighboring regions. Variational specifications will be built up incrementally and
interactively by the user. The construction example above indicates some of the ways in
which natural operations by the user can provide the information we need to construct and
modify a variational specification; more examples of this kind of interactive specification
are discussed below and in Chapter 7.

49

DRAFT: June 28, 1995 - 04:19 Chapter 3. Overview

Figure 3.2: Triangulated meshes, augmented with static information about topological re-
gions, geometric constraints and objective functions, serve as our representation of smooth
variational shapes.

3.3 Approximating variational shapes

Although it is easy to pose variational problems that characterize free-form shapes, solving
them is another matter. In such problems, we are solving for an optimal function (e.g., a
position function telling us where the surface is), rather than a single numerical value or
discrete set of values. Techniques from the calculus of variations occasionally allow us to
find explicit solutions in terms of special functions[CH37], but only for limited classes of
objective functions over geometrically simple domains. Things are almost never this simple
for the kinds of shape objective functions, constraints, and unrestricted domain topologies
we want to consider. Even when optima are known to exist, we generally will not know
how to find explicit functional forms for them (Section 2.5.1).

3.3.1 Pointwise approximation

Because we do not know how to directly solve for optimal shapes, we will instead approx-
imate them using an explicit surface representation. Given the variational specification
above, we could set up an approximation using any of a variety of smooth surface repre-
sentations — piecewise smooth polynomial patches, subdivision surfaces, etc., as has been
done in previous work. Instead, our approach to representing approximate shapes (detailed
in Chapter 5) uses the same triangulated surface meshes we that record curve and surface
topology, by associating a 3D position with each node of the triangulation and thereby
immersing the mesh as a piecewise linear surface.

A fair amount of machinery goes towards computing node positions to approximate
variational shapes at interactive speeds, despite (or sometimes because of) the simplicity
of our underlying representation. At the lowest level, we must be able to compute over
the mesh as if it were a sampling of some underlying smooth surface. To do this, we
use a generalized finite-difference scheme, fitting a truncated Taylor series to each nodal
neighborhood in the mesh, allowing us to compute surface derivatives at the nodes. Given
this local reconstruction scheme, we may then compute approximate solutions to smooth

50

3.4. Modeling with variational shapes DRAFT: June 28, 1995 - 04:19

variational minimizations by evaluating the integrals numerically at mesh nodes and then
solving for shapes that directly minimize this mesh objective.

3.3.2 Maintaining a quality mesh

As we will see in Chapter 5, the shape objective functions we use are really only concerned
with moving surface nodes in directions normal to the fitted surface to improve the shape.
They have nothing useful to say about the distribution of nodes relative to each other over
the triangulated surface. As it happens, this distribution is important for the accuracy
and stability of the shape approximation calculations, because the triangulated surface
essentially serves as the computational mesh over which the generalized finite-difference
scheme operates. This leads us to consider the problem of maintaining a uniform nodal
distribution as the surface shape changes. This is posed as a variational minimization
which will slide nodes around on the triangulated surface, to optimize the quality of the
computational mesh. In addition to controlling the relative nodal distribution, we regulate
the absolute nodal density as surface areas grow or shrink, using an automatic refinement
procedure. To ensure that the mesh doesn’t contain “skinny” triangles, we use a dynamic
surface Delaunay triangulation scheme, so that a quality surface triangulation is present
at all times as surface shape and topology changes. Incorporating such a re-triangulator
into the modeler affords an unrelated but important benefit: because of the way the mesh
connectivity adapts as shape changes, surface “features” are free to slide around relative to
each other within the mesh (Section 7.3.4). This would allow, for example, a designer of
an automobile hood to slide an air intake scoop around on the hood surface to adjust its
position.

3.4 Modeling with variational shapes

The variational tools described here will be much more convenient for the designer of free-
form curve and surface shapes than using fixed representation parameters like B-spline
control points. The designer can create any number of control points (and control curves)
and place them anywhere. Surfaces may be cut apart and stitched together into more
complex global topologies. Nevertheless, even with this approach there are modeling oper-
ations that might be conceptually simple from a designer’s point of view but will in fact
require a coordinated set of changes to the underlying variational specification. This makes
it useful to consider higher-level modeling operations expressed as simple operations on the
lower-level variational surfaces. Having already developed the machinery to approximate
such surfaces, we can safely hide these details in a computational black-box and use varia-
tional shape specification as the basic representation on which to build a free-form surface
modeler.

In Chapter 7, we consider a number of basic modeling operations cast in terms of this
variational substrate. For example, we discuss how a designer might go about specifying
changes to surface topology in the course of constructing a model. The handle-attachment
in Figure 7.2 is an example. The conceptually simple operation of merging the two surfaces
will be automated by the modeler as a series of operations that result in an appropriately

51

DRAFT: June 28, 1995 - 04:19 Chapter 3. Overview

Figure 3.3: A model that mixes variational and explicitly represented shapes. A sphere
tool controls a portion of the surface, to which supporting handles have been attached, and

through which a hole has been drilled.

shaped hole being cut in the torus, and a blending skirt being added to join the torus and
cylinder at the hole.

The cylinder tool itself demonstrates another important feature of our approach: the
mixing of variational and explicit surfaces in a single model. The cylinder’s shape is not
defined through functional minimization, but explicitly as a constant-radius offset from a
backbone curve (which is itself a variational curve, in this example). There are any number
of such shapes that may properly be considered “free-form” by our broad definition, but
that contain symmetries with respect to one or more defining curves, or have cross-sections
that must match some specified functional form. Explicit definitions are a much more
sensible way to specify such shapes, such as generalized sweeps[SK91, SK92]. Therefore, we
consider ways of incorporating such explicit shapes in a variational model. The ability to
smoothly join variational shapes and externally defined shapes in a common framework lets
us a) “glue” these external shapes together with variational blend surfaces and b) modify
their apparent topologies (independently of their explicit representations), by boring holes
in them or attaching handles using trim-and-stitch operations (Figure 3.3).

3.4.1 Designing with approximations

Since we can only present a designer with approximate renderings of what are supposed to
be smooth variational shapes, the question arises — how do we make sense of the designer’s
manipulation of these approximate shapes? The answer is that we never lose sight of the
fact that the implicitly defined variational surface is the “real” surface. The user will
interact only with these approximate renderings, but always with the understanding that
operations will be interpreted as implicitly defining an ideal smooth shape (by modifying
the definitions of the geometric constraints that frame the surface). The result is a method
for directly manipulating these smooth surfaces, regardless of the coarseness of their explicit
approximations.

A potential drawback of this approach is that we cannot consider modeling operations
that depend on these approximations to tell us something about the exact location of the

52

3.4. Modeling with variational shapes DRAFT: June 28, 1995 - 04:19

@) D

Figure 3.4: CSG-like boundary operations for surface construction: the cylinder and sphere
are trimmed against their intersection curve, and then joined to make a single toroidal
surface.

variational surface. For example, we shouldn’t look for points of intersection between two
approximate surfaces in order to answer the question, “do the variational surfaces intersect?”
Because of discretization error, whether or how two approximate surfaces intersect says
nothing about the true intersection topology.

This is not as big a drawback as it might seem at first. As an example, consider
the curved boundary-representation operations of[Rie89], in which intersecting surfaces are
trimmed against each other and joined along their intersection curves [TTSC91]. If we
are using variational surfaces, we cannot generally compute their intersection, which would
seem to rule out this style of trim-and-stitch construction. But the limitation disappears
if instead the trimming operation is conceived as taking a snapshot of the intersection
between the two approximate surfaces, then redefining the parent surfaces to interpolate this
independent curve as their new boundary (we construct a variational curve to approximate
this intersection shape by sampling the explicit mesh intersection somewhat coarsely and
using these as point constraints). This has the advantage over passive surface intersection
that the intersection curve, and optionally its tangent ribbon, becomes an independent
control curve in the composite surface, and can subsequently be directly reshaped by the
designer (Figure 3.5).

53

DRAFT: June 28, 1995 - 04:19 Chapter 3. Overview

Figure 3.5: Rather than remaining dependent on the original sphere and cylinder, the
original intersection curve becomes an independent control curve, and may be reshaped.

3.4.2 Topological design

We are distinguishing between topological design and shape design because it is very natural
and convenient to think about these as separate phases of a 3D design process. While from a
design standpoint it is not particularly interesting to point out that a donut is topologically
equivalent to a coffee mug, if we want to consider designing a family of coffee mugs we
might expect to fix the topology fairly early in the process, then manipulate or deform the
shape while leaving the topology unchanged as we refined our mug. In this case, various
disjoint regions might correspond to different components or features of the mug, each of
whose shapes will be controlled in a different way. Contrast this with a volumetric sculpting
process, in which mugs must be “carved” out of blocks of material. Here topology and shape
are inextricably bound up together, so that in changing the shape one might accidentally
change the topology (i.e., gouging a hole in the mug while thinning a wall).

Summary

We have discussed what it might be like to design free-form curves and surfaces as vari-
ational shapes, and how one can build up non-trivial topologies gradually, using sequences
of simple “surgical” operations. Variational shapes are described implicitly in terms of the
constraints they satisfy and the quality measures they optimize. A modeler that operates
on such variational specifications will need to be able to compute approximations to the
optimal shapes, quickly. We touched on some of the issues involved in computing such
approximations, to be fleshed out in upcoming chapters.

54

Chapter 4

Variational Shape Specifications

Synopsis

Variational shape specifications are skeletal recipes for smooth curve and surface
shapes. The recipes include topological information, local shape information in
the form of geometric constraints, and shape objective functions. We represent
these specifications as meshes of connected curve and surface elements, and tag
each element with an appropriate “shape controller”, depending on how the
element’s shape is to be computed. Here we develop algorithms for building,
modifying, and tagging topological meshes to represent variational specifica-
tions.

This chapter develops our basic methods of specifying variational shapes, and of repre-
senting these specifications in the computer. We are not concerned here with explicit curve
and surface shapes. Rather, we are concerned with the information needed to specify a
variational optimization that implicitly defines a particular free-form shape. Given such a
specification, we will consider methods of approximating the associated surface using any
of a variety of explicit curve and surface representations in later chapters.

Variational specifications have been present to varying degrees in previous variational
surface modelers [CG91, WW92, MS92], implicit in the stitching-together of surface ele-
ments, the mechanics of local refinement schemes, and the objective functions used. But
they have not really been considered as first-class entities unto themselves, independent
of the explicit surface representations used by the modelers in question. Doing so is not
particularly complicated; but it is a prerequisite to the kind of modeling we want to do.
Ultimately, we will communicate with our modeler in by creating and operating on such
an abstract variational specification, and thereby avoid specializing our operations to any
particular piecewise surface representation.

4.1 Ingredients
Any curve or surface model can be seen as containing two fundamentally different kinds

of information: that related to topology, and that related to its immersion or shape. The
topological information, discussed in Chapter 2, gives us a decomposition of the model as

55

DRAFT: June 28, 1995 - 04:19 Chapter 4. Variational Shape Specifications

a set of connected components. The immersion tells us where each of the model’s domain
points is located in space.

In this work, a model’s topology will always be represented explicitly, so that we have
explicit control over a model’s topology. As was discussed in Section 2.2, not all shape
representations allow the topology and the immersion to be treated separately. In repre-
sentations where shape and topology are so intimately linked, there is no guarantee that
the topology won’t change out from under us when we change the shape.

Immersed free-form curves and surfaces, as discussed in Chapter 2, are most commonly
represented as explicit coordinate functions that map a 1D or 2D parametric domain into
space. In contrast, a variational shape specification has no such explicit immersion. Rather,
the immersion is characterized implicitly, in terms of geometric constraints it should satisfy
and geometric measures it should maximize or minimize subject to these constraints. A
geometric constraint might take the form of a control point or curve that the shape must
interpolate (i.e., explicit coordinate assignments for some subset of the model); or it might
require the model to have a prescribed normal at some point or (though we do not consider
these here) maintain a prescribed area or volume. Geometric objective functions to be
optimized subject to these constraints could include the goals of minimum surface area or
curvature.

So we record three kinds of information in a variational specification: topology, geometric
constraints, and geometric objective functions. Below, we consider how this information
will be represented. We will work extensively with meshes, and discuss a number of mesh
transformation algorithms necessary for building our topological specifications. We will not
be concerned with a mesh’s shape (an important aspect of the algorithms developed here is
that the meshes needn’t even have 3D coordinates associated with them). The problem of
using these specifications to compute a variational shape will be taken up in the next three
chapters.

4.2 Topology

In our modeler, points, curves, and surfaces are the only topological elements that will be
needed. A natural way of representing these domains uses simplicial complexes (Chapter 2);
and a natural way of representing these simplicial complexes on a computer is as lists of
nodes (for 1D complexes) and triangulated meshes of nodes (for 2D complexes). With
this, the seemingly abstract task of specifying and representing topology becomes the very
concrete task of building a mesh. We’ll look at user-level tools for creating and modifying
model topologies in Chapter 7. In this section we take up lower-level representation issues
— how to represent and operate on topological meshes

4.2.1 Topological representation

We begin by outlining how we represent mesh specifications, from the bottom-up, begin-
ning with the simplest elements. There is nothing particularly novel or deep about this
representation scheme; we offer it more for definiteness in the discussions to follow. Any
of a variety of boundary-representation schemes from solid modeling might have been used

56

4.2. Topology DRAFT: June 28, 1995 - 04:19

° Curve = (A,B,C)

Figure 4.1: A 1D topological domain (a curve) is represented as a list of nodes.

Neighborhoods:
ctr neighbors topology
O, (AB,CD,E) @
F,(CCGHD) @
C, (B,O,D,F,.G) =
D, (E,O,C,F,H)
..etc...

Figure 4.2: A 2D topological domain (a surface) is represented as a list of neighborhoods,
each of which has a center node and a list of neighbor nodes.

here (Chapter 2), but these contain much more element grouping and incidence information
than we care to use or maintain.

Primitive elements

The simplest topological element is a point (a node, in our data structures below). Curve
and surface elements will be built up as lists of nodes.

A 1D interval (a curve segment) will be represented as a list of nodes, with edges implied
between successive nodes (Figure 4.1). For open curves, the first and last nodes represent
the boundary points; for closed curves, an edge is implied between the first and last nodes
in the list. We will not allow more than one edge to connect the same two curve nodes
(this restriction is important for embedded surface curves, below); thus, a closed curve must
contain at least 3 nodes.

A 2D patch (a surface mesh) is represented as list of neighborhoods, each having a
center node and an ordered list of neighbor nodes. (Figure 4.2). Triangular faces are
implied between successive neighbor nodes. For nodes on a boundary of the surface, the
first and last neighbors will lie on the boundary as well, and the neighborhood is isomorphic
to a half-disc. For nodes in the surface interior, the neighborhood is isomorphic to a full
disc, and a triangular face is implied between the first and last neighbors. Mechanically,
neighbor lists work much as if they represent an (open/closed) embedded curve that bounds
the (boundary/interior) neighborhood.

Curves that are embedded in a surface are represented as sequences of edge-connected

57

DRAFT: June 28, 1995 - 04:19 Chapter 4. Variational Shape Specifications

Surface curve = (B,0,D,H,G,C)

Figure 4.3: An embedded surface curve is a list of edge-connected surface nodes.

surface nodes (Figure 4.3). It is necessary that the curve nodes be connected by surface
edges so that we can treat the embedded curve as a restriction of the mesh to a 1D domain.
A closed surface curve must contain at least 3 nodes, so that it will enclose one or more
triangles on the surface and thus divide the surface into nonempty “inside” and “outside”
regions. This constraint will simplify the mesh transformation algorithms in later sections.

For the use of some of the algorithms below and in Chapter 6 we will need an explicit
list of mesh edges. The edge-list is easily derived from the neighbor lists of the mesh nodes,
with each node-neighbor pair corresponding to an edge. A list of triangular faces can be
similarly collected. The cost of these traversals might seem to be O(nodes?) because there
is no limit to the number of neighbors a single node may have, but this is not so. It can
be shown (using the Euler characteristic (Chapter 2) and a simple counting argument) that
for a triangulated surface of genus g, the total number of edges is bounded linearly by the
number of vertices:

E<3V+6(g—1)
(equality holds when the surface is closed). Further, the faces are related to the edges by
F =2/3F,

and thus the cost of the traversal is linear in the number of nodes.

This node-based mesh representation was chosen for simplicity, and because ordered
neighbor traversal will be used so often in the neighborhood-based computations of Chap-
ters 5 and 6. Other ways of representing triangulations might also have been used here that
would maintain edge and face lists at all times, thus eliminating the separate linear-cost
collection steps in favor of more tedious but constant-cost bookkeeping.

Continuous collections of elements: Regions

58

4.2. Topology DRAFT: June 28, 1995 - 04:19

Figure 4.4: A surface mesh will be decomposed into disjoint 0D, 1D, and 2D regions.

Points on a curve break it into disjoint intervals; and closed curves on a surface break it
up into disjoint patches. Such regional decompositions of curve and surface domains will
be very important to us, for organizing computations and data within a mesh. A model’s
topological mesh will generally be decomposed into an assortment of regions of dimension
0, 1, or 2 (Figure 4.4). We will represent the decomposition by maintaining a list of regions,
and by labeling nodes, edges, and faces with the region to which each belongs. Note that an
element may only belong to one region; thus, a region will not generally include its boundary
elements, as they are often treated separately as regions of their own. This is closely related
to the topological notion of a cell-decomposition (Chapter 2) and is a useful abstraction
because cells do not depend on the particular triangulations of their components or their
relative levels of refinement.

The special nodes or edges in a mesh that define embedded curves or control points
we refer to as source edges and nodes (a customary term in the triangulation literature).
Given a mesh and a collection of source nodes and edges, we sweep through and assemble a
list of regions, labeling each of the mesh elements using a standard connected-components

algorithm ([CLR90]):

59

DRAFT: June 28, 1995 - 04:19 Chapter 4. Variational Shape Specifications

Algorithm: label-regions

1. For each source node:
create a OD region and label the node.

2. For each source edge:
if neither of the edge’s nodes is tagged with a 1D region,
create a new 1D region
else if both nodes are tagged with different 1D regiomns,
union the different regions
tag the edge and any untagged end node with the new 1D region
(leave OD labels in place)

3. For each surface triangle:
if none of the triangle’s edges is tagged with a 2D region,
create a new 2D region
else if more than one edge is tagged, with different 2D regiomns,
union the different regions
tag the face and unlabeled nodes and edges with the new region
(leave OD, 1D tags in place)

An efficient implementation of this algorithm uses a standard Union-Find data structure[CLR90]
to tag and merge regions in essentially constant time (amortized over a sequence of oper-
ations). So, given the linear relationship between the numbers of edges, nodes, and faces,
the cost of performing this region labeling is essentially linear in the number of mesh nodes.

4.2.2 Specifying topology by building a mesh

When it comes down to actually constructing meshes, we will sometimes do so “from
scratch” and at other times operate on an existing mesh to transform it. We want to
avoid ever having to repair or transform a mesh by triangulating an unadorned set of ver-
tices, because doing something topologically appropriate can be difficult if not impossible.
Likewise, we want to avoid having the user perform any kind of surgery on an existing mesh
that might leave it in an inconsistent state. Therefore, we develop a set of mesh construction
and transformation primitives, each of which is guaranteed to leave a topologically valid
mesh in its wake.

The only meshes we directly construct are Cartesian products of an interval with either
another interval or a circle. These are nothing more than planar sheets and cylinders, and
they are constructed in obvious ways (Figure 4.5).

Mesh surgery

Instead of making a cylinder from scratch, we might equally well have made a sheet, iden-
tified a pair of intervals on its boundary, and stitched them together. Other, more complex
topologies will be built up in exactly this way, through surgery on boundary complexes of
simpler meshes. A simple example is Figure 4.6, in which the open ends of a cylinder are

60

4.2. Topology DRAFT: June 28, 1995 - 04:19

o @

Figure 4.5: Constructing topological sheets and cylinders as products of 1-dimensional

% i
&>

Figure 4.6: Capping the ends of a cylinder to make a topological sphere

Nz

closed by adding sheets to make a topological sphere. The basic surgical operations needed
for meshes are cutting and gluing along embedded curves.

The mechanics of cutting are straightforward. Given a closed, embedded curve dividing
a surface into inside and outside regions, the curve is “copied” by creating a corresponding
list of new, unconnected surface nodes. Any 0D tags (control point indicators) are cloned as
well, to propagate the way the curve is broken up into 1D regions. Then each of the original
nodes’ neighbor lists is split into inside and outside halves, and the inside neighbors are
reassigned to the new curve’s nodes. A similar operation is possible on an open embedded
curve to cut a “slit” in a surface. In this case, only the interior nodes of the curve are copied
and split, and the original curve boundary nodes are opened up into half-discs to connect
the two new boundary curves into a single closed loop.

Gluing is, conceptually, the inverse of splitting. But the only time the two operations
are algorithmic inverses is when we are gluing two boundary curves whose regions and their

DRAFT: June 28, 1995 - 04:19 Chapter 4. Variational Shape Specifications

RO

-~ - >

Figure 4.7: Two cylindrical surfaces are glued together after their boundaries have been
made compatible through an edge-split.

nodes correspond exactly (i.e., two boundary curves just created by a splitting operation).
In this case, gluing is a simple matter of identifying corresponding boundary nodes, dis-
carding one set of nodes, and adding their neighbor lists to the corresponding nodes on the
other curve. The two boundary curves become a single interior curve.

The general gluing operation is a bit more complicated, because it must handle surfaces
bounded by curves with different numbers of nodes (Figure 4.7). The curves must first be
brought into correspondence. We assume we are given a 1-1 correspondence between source
nodes on the curves, which implicitly gives us a correspondence between regions on the
curves as well. Note that whatever higher-level process is calling for the merge may need to
add or delete source nodes on either curve to make the 1-1 correspondence possible. Each of
the regions is then brought into node-to-node correspondence, with additional nodes being
created as needed through edge splitting (described below). The merger then proceeds as
above.

4.2.3 Mesh transformations

In this section we discuss mesh transformations — operations that transform between differ-
ent triangulations of the same topological surface. We will need these for purely topological
reasons, e.g., to insert p.l. curves into surface meshes or eliminate redundant mesh nodes.
We will also use these transformations in later chapters in dealing with 3D meshes, and
therefore may dwell occasionally on issues related to node positions. But the intent of each

62

4.2. Topology DRAFT: June 28, 1995 - 04:19

Figure 4.8: Node deletion: a sequence of edge-flips whittles away at the hollow node until

an inverse face-split can be used to remove the node.

- A _

Figure 4.9: Edge insertion: a sequence of edge-flips modifies the mesh so that an edge is
introduced between the hollow nodes.

of these algorithms is that it not depend on node positions in order to do its job, and that
mesh topologies are always preserved or changed in controlled ways.

Our basic transformations will be the Alexander moves outlined in Figure 2.17. The
order-1 refinement is more commonly known as an edge split, the order-2 refinement a face
split. An edge split and an inverse edge split can be combined to exchange the diagonal
of a mesh quadrilateral; this operation is commonly known as an edge flip, and treated as
atomic. Note that boundary edges cannot be flipped (there is no quadrilateral), and edges
that are part of an embedded surface curve should not be flipped or the curve’s continuity
will be disrupted.

Deleting nodes

In working with triangulations in the plane, node deletion is almost always accomplished
by discarding the node and its edges and then re-triangulating that portion of the mesh.
In working with abstract surfaces, planar re-triangulation is not an option. Figure 4.8
illustrates our node deletion algorithm. The simplest case is an infield, non-source node:
For degree-3 nodes, deletion is the inverse of the Face-split operation. For nodes of higher
degree, iteratively flip away edges until the node is degree-3, then apply the inverse Face-
split. It should be clear that this procedure always terminates in a degree-3 node that may
then be removed.

Boundary nodes are handled similarly: they are first reduced to degree-2 by edge-flips,
and are then deleted along with their associated face. In effect, the corner is snipped away,
so that an edge connecting the triangle’s other two nodes becomes a new boundary edge.

Deleting source nodes through which an embedded curve passes requires much more
explanation, though little more actual work. Exactly two source edges meet at a source
node — else the node would be a curve endpoint or curve intersection point and we would
not be deleting it. Furthermore, following these two edges out to their other endpoints,
we may assume these neighbor source nodes are not connected by a source edge — else,
the closed curve would only contain 3 edges and again the node would not be a candidate

63

DRAFT: June 28, 1995 - 04:19 Chapter 4. Variational Shape Specifications

for removal. Reduction to degree-3 proceeds as before using edge-flips (no source edges
are flipped). A natural consequence of this reduction is that a (non-source) edge will be
placed between the two neighbor source nodes, if one was not there to begin with. After the
degree-3 node has been deleted the curve will have been disrupted. The curve’s continuity
may be restored by incorporating that non-source edge connecting the source nodes into
the curve and marking it as a source edge to avoid future disruptions. Another way one
might delete nodes uses the “edge-collapse” operation of [HDD%93], which is more general
than an inverse edge split because it can be used to remove nodes having any number of
neighbors. Though it is conceptually simpler than the above, we found that implementing
it to correctly handle source edges is more complicated than the approach taken here.

Remark on shape preservation

So far, our algorithms have been purely topological. All references to mesh components have
been through nodes and neighbor lists, and we have made no reference to actual 3D vertex
coordinates. We could continue in this vein with the remaining mesh transformations. But
later we will be immersing these meshes in 3D as p.l. approximations to smooth shapes. It
would be nice if mesh transformation operations, in addition to being topology-preserving,
would also preserve shape as much as possible. This is not an absolute requirement like
topology-preservation, because it will officially be someone else’s job to worry about mesh
shape (Chapters 5 and 6). But it will be helpful to other calculations if the mesh transfor-
mations do not perturb the shapes needlessly, and there are some simple things we can do
toward that end.

When splitting edges or faces in 3D, clearly we can compute the new node’s position to
center it on the element just split. Deleting a node using edge flips can cause the mesh to
fold back on itself. Since it does not matter topologically which edges are flipped or in what
order, we attempt to minimize folding by always flipping the edge that yields the flattest
dihedral angle. This does not guarantee that the surface will keep its shape, but generally
does a good job. If for some reason it was crucial that the surface shape be disrupted even
less, a procedure that perturbed node positions could be devised.

We note in passing that node deletion, face splitting, and edge insertion (below) do not
leave particularly “nice” triangulations when applied to 3D meshes; triangle sizes and aspect
ratios can become rather uneven. Again, this is not a topological issue. If it is important
that a nice triangulation be maintained over an immersed mesh (it will be for us), a re-
triangulation step should follow these operations. We discuss a simple, topology-safe re-
triangulator in Chapter 6. We have found it much simpler to apply a single universal mesh
improvement algorithm to a neighborhood after any one of these transformations, rather
than complicate the individual transformations by devising each to leave a nice triangulation

behind.

Edge insertion

The edge-insertion operation (Figure 4.9) is a basic part of our algorithm for inserting curves
into a mesh. Given two nodes in the mesh, it adjusts the mesh so that an edge connects
two nodes. First, we find a sequence of abutting triangles that connect these initial and

64

4.2. Topology DRAFT: June 28, 1995 - 04:19

final nodes. The triangles’ union is a polygonal “channel” with no interior nodes, and the
edge we will insert will run down the middle of this channel. Looking down the channel
from the initial to the final node, there are edges crossing the channel (like rungs of a
ladder). We sweep from one end of the channel to the other, flipping each of these edges
in succession. The final flip inserts the desired edge. Note that the channel must not be
crossed by any source edge, because such an edge cannot be flipped out of the way (though
see the discussion on curve insertion, below).

As with our node deletion algorithm, this procedure can leave small folds in a p.l. surface
due to unlucky edge-flips (particularly when three or more nodes are nearly collinear). One
possible solution to this problem is to change the order in which channel edges are flipped,
choosing flips that minimize creasing. Dyn, et al.[DGR93], show that in the planar case,
there is always a choice of channel and edge-flipping sequence that avoids folding. In the
non-planar case, choosing the crossing edge that yields the flattest dihedral is a reasonable
generalization, and given a flat mesh it reduces to the planar algorithm (assuming the
channel itself is straight enough that the inserted edge won’t touch or cross its boundary).

Inserting curves

In order to operate on surface curves (e.g., to constrain a surface along a control curve,
or prepare a mesh for surgery), we will need to explicitly embed such curves in a mesh.
Given a surface in 3D, one might use a “cookie-cutter” approach, extruding the immersed
curve normal to the surface to make a cutting ribbon, and intersecting this ribbon with
the surface to introduce new vertices and edges. Unfortunately, this offers no insight about
inserting a curve as a purely topological operation, in the absence of a 3D mesh immersion.
And, even for an immersed mesh, a robust implementation of this naive approach would be
plagued with the kinds of “general position” problems that complicate so many algorithms
from computational geometry.

A much simpler approach uses the edge-insertion operation to connect a sequence of
nodes in the mesh. These nodes can be introduced through edge- or face-splitting opera-
tions. For a p.l. surface, this allows the curve to be “drawn” on the surface as a sequence
of points, and their positions can guide the channel-finding part of the edge-insertion trans-
formations. For a purely topological version of the operation, these must be guided by
structural information.

If there is no requirement that the inserted curve contain only the originally specified
nodes, another way to connect these nodes begins by finding polygonal channels connecting
the nodes, as with edge-insertion. But then, instead of flipping the cross-channel edges
out of the way, these edges are split, creating a sequence of edges that runs through the
middle of the channel to connect the initial and final nodes (Figure 4.10). This completely
avoids the folding problems discussed earlier for p.l. surfaces, at the expense of creating a
more densely sampled curve. It also accommodates cross-channel source edges, by creating
explicit intersection points between the new curve and existing curves.

65

DRAFT: June 28, 1995 - 04:19 Chapter 4. Variational Shape Specifications

Figure 4.10: A p.l. curve is inserted into the mesh via edge splitting.

4.3 Attaching shape specifications to the mesh

The structures and operations of the previous section will be used to create a mesh rep-
resentation of the “topology-part” of a free-form shape specification. In this section we
consider how to represent the “shape-part” of such specifications, information related to
computing an immersion for the domain.

The shape specifications we want to support are mixtures of explicit positional informa-
tion (i.e., specific points that curves or surfaces should interpolate) and implicit information
(i.e., extremize a fairness objective). A variational specification must distribute such im-
plicit shape information over the mesh, in the form of geometric constraints, objectives, and
dependencies, telling us how to compute an immersion. Think of it as a recipe for shape.

Our mesh representation includes a decomposition into 0, 1, and 2 dimensional regions.
Shape information will be incorporated into the mesh by giving each region its own “shape
controller”, a tag indicating how an immersion for that portion of the domain is to be
computed. This is a little different from a completely explicit surface modeler, where
a collection of surface patches would suffice to define a surface, because we have a mix
of point, curve, and surface controllers, all interacting through constraint and objective
function dependencies.

4.3.1 Geometric Constraints

In this work we will consider interpolation and normal or ribbon constraints (Chapter 2). An
interpolation constraint says that the surface must pass through a particular point or curve,
or incorporate part of an explicitly defined surface region into its overall shape (external
shape-copying). A normal constraint says the shape should have prescribed normal vectors

66

4.3. Attaching shape specifications to the mesh DRAFT: June 28, 1995 - 04:19

< "j s S

R

Figure 4.11: Constraint and objective skeleton for the Party Hat. The constraint curves
and cylindrical offset surfaces (controlled by individual backbone curves) provide a partial
specification for the overall surface shape.

within a specified region; this lets us force a curve or surface to be tangent to some other
shape. We will discuss the computational issues involved in enforcing these constraints in
Chapter 5. Here we are concerned with representing the constraint information rather than
computing a satisfying shape.

Interpolation constraints will ultimately be implemented by copying the shape of some
“source” piece of geometry. The mesh region will be tagged with a pointer to this source,
for use by the process responsible for computing the region’s shape. We make no restriction
on the particular representation of such source geometry — it could be a piecewise smooth
polynomial, an algebraic surface, or a p.l. shape represented by some other mesh. It will be
the region controller’s job to sample this source immersion and use it to construct a matching
shape for the region. As a concrete example, surface control curves are implemented by
having an embedded curve copy the position of a corresponding free-standing control curve,
carrying the surrounding surface with it. The topological mesh region corresponding to the
embedded curve would be tagged with a pointer to this control curve.

These kinds of one-way constraints allow us to establish a hierarchy of control, recorded
in the mesh by constraint dependencies. Continuing the example above, the free-standing
control curve might be a variational curve forced to interpolate selected control points. The
curve nodes corresponding to these control points would be tagged with pointers to free-
standing control points. Changing the position of a control point would cause the control
curve to change shape, which would then cause the surface to change shape.

We only consider normal constraints anchored to point or curve constraints. The normal

67

DRAFT: June 28, 1995 - 04:19 Chapter 4. Variational Shape Specifications

information is stored similarly to the positional interpolation information, as pointers to
externally represented tangent planes or ribbons.

4.3.2 Specifying creases and corners

The shape computation scheme to be used in Chapter 5 assumes that regions are smooth
throughout their interiors, and that discontinuities may only occur at region boundaries.
We will support two kinds of continuity between faired regions: G° (positional continuity)
and G? (positional, normal, and curvature continuity). A G° join between two curves
or surfaces is a crease or corner; a (G join has the same degree of smoothness as the
interior. The fact that this maximum continuity is G? and not G! or G" is a function
of the approximation scheme we adopt in Chapter 5, and might be different if a different
approach were used.

To record this continuity information, in keeping with the spirit of labeling regions with
shape-related information, we might tag region boundaries with the desired continuity. But
continuity is a matter of communication between adjacent regions: for C° continuity, only
positional information along the boundary is shared; for C? , normal and curvature infor-
mation propagates across the boundary. It will turn out to be computationally convenient
to have the mesh directly reflect this communication. Thus, we will represent a C° join as
two independent meshes constrained to interpolate a shared boundary curve. A C? join
will be represented simply as a single mesh with an interior embedded curve, as we have
been discussing all along. Creasing a surface means splitting its mesh along the crease curve
and constraining both sides to interpolate it.

4.3.3 Objective functions

The final step in constructing a variational specification is to associate an objective function
with any unconstrained regions in the mesh. These are functions that measure some aspect
of shape at a point of evaluation and return a “goodness” rating for that point. Integrating
the measure over a piece of geometry measures the overall quality of the shape relative
to other possible shapes. The modeler will use this to determine what to do with curve
and surface shapes in-between constraints, by seeking shapes that minimize this measure
subject to any geometric constraints that may be present.

In this work we use objective functions whose minimization yields “fair” surfaces. The
functions measure total curvature over curves and surfaces, and are based on the bending
energy of a thin beam or plate:

gcurve - / HQdSv (41)

Eourt = / (k2 + K2) dA. (4.2)
surf

Minimizing these functions distributes curvature over curves or surfaces to eliminate
unwanted bulges or wiggles; they are discussed in more detail in Chapter 5. Other objective
functions one might consider, though they are not addressed in this work, include surface

68

4.3. Attaching shape specifications to the mesh DRAFT: June 28, 1995 - 04:19

area (Section 2.5.2) or variation of curvature. We discuss the tradeoffs between the thin-
plate and other fairness measures in more detail in the next chapter.

Taken together, this information — topology, geometric constraints, and piecewise ob-
jective functions — implicitly describes a variational shape. Though we cannot solve directly
for an immersion of a given topological domain, a specification like this can be used to set
up approximations based on any of a variety of piecewise smooth representations. We con-
sider this problem in the following chapter. Further implementation issues, such as how to
coordinate the various shape computations with topological operations, and how to build a
free-form shape modeler using this general approach, will be addressed in Chapter 7.

Summary

We have described a method of representing and constructing a variational shape spec-
ification. The basic representation is a tagged mesh: the mesh represents topological in-
formation, and the tagged regions within it indicate how the shapes of various curve and
surface components are to be computed. Tagged meshes are not new — they are basic
to any boundary-representation scheme in constructive solid geometry. Our intended use,
however, is novel, as are our topology-safe mesh transformations for node deletion and
curve insertion. These transformations may also find use beyond our application, in general
polygonal mesh manipulations.

69

DRAFT: June 28, 1995 - 04:19 Chapter 4. Variational Shape Specifications

70

Chapter 5

Approximating Variational Shapes

Synopsis

In this chapter we present a method of approximating shapes that minimize a
geometric thin-plate objective function while satisfying point and normal inter-
polation constraints. We use triangulated surface meshes as approximations to
smooth surface shapes (the same meshes used to record topology in the previous
chapter). We estimate surface curvature at mesh nodes by fitting a quadratic
surface function at each mesh neighborhood. We drive the mesh towards an
optimal approximating shape by minimizing a sequence of quadratic approxi-
mations to the geometric objective function (Figure 5.1).

The skeletal shape specifications developed in the previous chapter give us implicit
representations of curve or surface shapes. In order to move from there to an explicit 3D
representation — which we’ll need to render, export, or do just about anything useful with
the geometry — we must solve the corresponding variational minimization problem. But
it may not be possible to solve such problems in closed form, due to the complexity of the
domain, objective function, or boundary conditions[BCOS81]. Generally, the best we can
hope to do is compute approximations to the true solutions.

5.1 Overview of the approximation method

At an abstract level, our approach to variational approximation is typical. We’ve been
given an infinite-dimensional problem: find an immersion for the domain curve and surface
regions of the skeletal specification, mapping their points into space in a way that satis-
fies the given geometric conditions. We convert this into a finite-dimensional problem by
choosing an explicit representation for the immersed curves and surfaces, then re-stating
the constraints and objectives in terms of these representation parameters. Because of the
particular constraint and objective functions we use, the discretization step will yield a
multivariate optimization that is nonlinear in the representation parameters. We solve for
optimal representation parameter values — thus “fitting” the curve or surface to the vari-
ational shape — by minimizing a succession of quadratic approximations to the nonlinear
problem.

71

DRAFT: June 28, 1995 - 04:19 Chapter 5. Approximating Variational Shapes

Curve Surface

1.
3D mesh neighborhoods @ N\
2. ﬂ Fit local quadratics 2 \

Minimize
global objective

Figure 5.1: Synopsis of approximation approach: 1) Use a p.l. mesh to approximate smooth
shapes. 2) Estimate curvature at mesh nodes. 3) Drive the mesh towards an optimal shape
by minimizing a discretized curvature integral.

What is unusual about our approach is that we will take as our approximating represen-
tation p.. curves and triangulated surface meshes — the same meshes used in the previous
chapter to represent region topologies. Our task then is to compute a 3D position for each
mesh node.

5.2 Why a mesh?

We must choose an explicit representation scheme for our curves and surfaces in R® . In
Section 2.5.4 we discussed earlier work that used piecewise smooth curve and surface patches
(tensor-product B-splines, Bezier triangles, subdivision surfaces) as representations for vari-
ational surface approximations, along with the pros and cons of each for use in an interactive
modeler. In this work, we will use a triangulated mesh to represent approximate smooth
surfaces. Our requirement that computations over arbitrary topologies be feasible at in-
teractive speeds was the principal reason for this choice; if we were were willing to wait
seconds or hours for a surface to be computed [HKD93, LP88, NLL90, MS92], just about
any linear patch scheme would work.

Instead, we will give up smoothness and directly immerse the triangle meshes of the
previous chapter to make a p.l. approximation of the free-form shape. While not as visually
appealing as a smooth representation, it will be fast, and we expect that in an interactive
design tool it will be OK to serve up such faceted approximations quickly, with the promise
that a high-quality smooth surface can be fit to the final design in a post-processing step.

72

5.3. Smooth mesh neighborhoods DRAFT: June 28, 1995 - 04:19

Of course, we cannot evaluate smooth functions (such as our curvature-based objective
function) directly on such a non-smooth mesh. We address this in Section 5.3 by fitting a
quadratic patch to the neighborhood around each node. Thus, our representation may be
viewed as either a p.l. surface with curvature estimates at the nodes, or as a discontinuous
union of quadratic discs, depending on your preference for finite difference or finite element
methods, respectively[ZM83].

A side-effect of the combined shape/topology roles to be played by our meshes is that
they will generally contain many more than the minimum number of simplices needed to
express the topology. A denser mesh will be used to more accurately approximate free-
form shapes by providing sample points. Nothing about our use of topological meshes will
demand a minimal set of vertices, so it is alright to enrich the mesh for this purpose. When,
in Section 6.3, we develop a mesh refinement scheme as part of the surface approximation
machinery, we will use the mesh transformation operations of Section 4.2.3 to ensure that
the underlying topology will not be changed by coarsening or refining the mesh. (this is in
contrast with multi-resolution polygonal modeling schemes in which holes might disappear
along with other fine detail as the model is coarsened[HG94]). Note that it will always
be possible to derive a minimal mesh from a richer one by repeatedly un-refining until no
legal moves are left, effectively “dehydrating” the mesh to leave its topologically essential
components.

5.3 Smooth mesh neighborhoods

If we are to use a mesh to approximate variational shapes we will need to compute over the
mesh as if it was a sampling of a smooth surface. To do so, in addition to sample point
positions we also need to be able to evaluate surface first and second derivatives at each of
these points, in order to compute curvatures and normals. If we had a rectangular mesh,
we could apply a standard finite difference stencil to the node and its neighbor positions to
estimate these derivatives. With irregular mesh neighborhoods, this approach breaks down
since a single regular stencil cannot be used.

As it happens, the way that finite-difference stencils are constructed is by making a trun-
cated Taylor series expansion of a low-degree polynomial fitted to a mesh neighborhood[Lan56].
This approach does generalize to irregular mesh neighborhoods[FW60]. Since we need to
compute surface curvature, we will retain the first and second derivative terms of the series,
effectively fitting a quadratic patch to the neighborhood. This is essentially the approach
taken in several earlier scattered data approaches (e.g., [Law77, SZ90, Ham93]). What is
unique is our way of constructing a neighborhood parameterization with which to conduct
the fitting.

5.3.1 Building neighborhood parameterizations

A garden-variety rectangular finite-difference mesh has global parameterization — the (u, v)
plane. As has been discussed, global parameterizations generally do not exist for the surfaces
we want to model. So instead we will construct a separate parameterization for each mesh
neighborhood, and fit the neighborhood quadratic with respect to this parameterization.

73

DRAFT: June 28, 1995 - 04:19 Chapter 5. Approximating Variational Shapes

4 *1

Figure 5.2: A failed neighborhood projection: projecting onto a plane does not guarantee a
one-to-one relationship between surface points and plane points, and this can scramble the
angular ordering of the neighbors.

As discussed, a usual way to parameterize this fit is by projection: find a normal, then
project the neighborhood onto the tangent plane.

A weakness of the projection method is that it requires reliable estimates of curve and
surface normals in order to determine a tangent plane on which to project the parameteri-
zation. If the normal used isn’t close to the ultimately fitted normal, the expectation is the
shape of the fitted surface will not be a good match to the neighborhood geometry. A Taylor
expansion of a smooth surface using geometric information such as the true curvature and
normal would differ from this fitted quadratic.

A more serious problem with such a projected parameterization is related to the behavior
of the projection and subsequent fitting when a p.l. surface neighborhood is folded (i.e., has
high polyhedral curvature). In such situations, the resulting projection of the neighborhood
on to the parameter plane may not be one-to-one (Figure 5.2). This has the effect of
scrambling the angular order of the neighbors about the node, and thus the topology of the
fitted polynomial will not match the topology of the folded mesh, and lead to erroneous
derivative estimates. This folding is perhaps less disastrous (though still anomalous) when
applied to the analysis of static objects (as in [SW92]), since such neighborhoods will be
rare for densely-sampled surfaces. But in our interactive modeler, there is nothing to stop
the user from tugging on a node and momentarily placing the surface in a badly folded
configuration. Ultimately, the fairing scheme will “iron out” such transient folding, but only
if the numerics honor the topology of these folded neighborhoods so that high polyhedral
curvature is reflected in the smooth curvature estimate.

74

5.3. Smooth mesh neighborhoods DRAFT: June 28, 1995 - 04:19

Figure 5.3: The straight-line distance between successive interpolation points is taken as
an approximation of their arc-length separation along the curve.

Figure 5.4: Geodesic polar map at a surface point.

Parameterizing curve neighborhoods

Rather than rely on an accurate normal projection to capture metric information (or ignore
it altogether by using a uniform parameterization), we will mimic an arc-length parameter-
ization of a curve by directly by measuring the Euclidean distances between neighbors and
taking that as their parametric separation. This is the well-known chord-length approxi-
mation to an arc-length parameterization[Far90, Epp76].

Parameterizing surface neighborhoods

75

DRAFT: June 28, 1995 - 04:19 Chapter 5. Approximating Variational Shapes

a(6;+6,+85+6,+65) =2m g

Figure 5.5: Parameterizing a surface neighborhood: angles between neighbors are measured
in 3D, then scaled to sum to 27. This acts analogously to the chord-length approximation
to arc-length along a curve.

We can directly measure neighbor distances on the mesh surface we did with curve param-
eterization; but we also need to compute tangent plane angular separations between the
geodesic paths to various neighbor points. This is the surface analogue of an arc-length
parameterization — the so-called geodesic polar map[O’N66] (Figure 5.4). It is simply a
generalization to geometric surfaces of polar coordinates (r,6) in the plane, where r now
indicates a distance traveled along a geodesic path away from the point, and 6 indicates the
initial direction to be taken. Unlike a curve, which can be given a single global arc-length
parameterization, geodesic maps must be constructed separately for each point on a curved
surface.

In the spirit of the chord-length approximation to arc-length, we will measure the angular
separation between each successive pair of neighbors in 3D. We then “project” these angles
onto a plane by uniformly scaling them so that they sum to 27 for nodes in the surface
interior and 7 for nodes on the boundary (Figure 5.5). The Euclidean distance from the
center node to each of its neighbors is taken as the radial parametric separation. This
procedure gives us an (r;,6;) for each neighbor (by convention, we place the first neighbor
at # = 0). From this we compute the corresponding (u;, v;) by a standard polar to Cartesian
transform in 2D. By analogy to the chordal parameterization for curves, we will refer to
this as a faceled parameterization for surface neighborhoods.

5.3.2 Surface coordinate fitting

Given a suitable parameterization of the neighborhood, it is a straightforward task to fit a
truncated Taylor series expansion for each of the surface z, y, and z coordinate functions
about the neighborhood center. In the following, py will designate the position of the node
at the neighborhood center, p;...p,, the positions of py’s n neighbors, and (ug, vg)...(%n, vs)
their parametric coordinates ((uo, vo) = (0,0)).

For each of the coordinate functions we seek the coefficients of a quadratic:

d d
s(u,v) =dop+diu+dyv+ §u2+d4 uv + ?5'1)2 (5.1)

76

5.3. Smooth mesh neighborhoods DRAFT: June 28, 1995 - 04:19

= b(u, U)d, (52)

where b(u,v) is the basis row vector [1, u, v, %uz, uv, %vz], and d a column vector of coeffi-
cients. We want s(ug, vg) = s(0,0) = po; this requires dy = pg (here we take p; to mean one
of piz, Piy; Diz, since the same fitting procedure applies to each). The remaining coeflicients

will be determined such that the s(u;, v;) are a least-squares fit to the p;.

For completeness, here are the details of the calculation: first, shift the neighborhood’s
3D origin to po, yielding the vector of shifted neighbor positions q = [py — po, ..., Pn — o] .
The sample matrix S for this shifted, center-constrained system is built by evaluating the
basis vector b(u;, v;) for each of the neighbors and collecting these rows into a matrix, then
deleting its first column:

2 , 1,2
Uy U1 §U1 U1 52]1
S = :
1,2 1,2
Up Up §un UpUp, §Un

Then S[dy, ...,ds)T = q, and the least-squares solution for d;...ds is

[dlv e d5]T = [STS]_ISTq (53)
=Zq.

We use this shifted formulation in ¢ instead of one in p because it reduces by one the rank
of the matrix that must be inverted. The mesh’s node and neighbor positions will of course
be stored as absolute positions, not shifted so that pg is the origin. But now that we have
a way to compute Z, we may recast the above more conveniently in terms of p; instead of
¢;. Let P represent the (n + 1) x 3 matrix of the p,’s z,y, z coordinates. The vector form
for the reconstructed surface positions s(u,v) is then

1 0 U 0 Poz Poy Poz
=222 Zu o Zin Piz Ply Piz

s(u, v) = b(u,v) : o ! (5.5)
- Z an an e Z'rm Prnz Pny Pnz

= b(u,v)BP. (5.6)

This is the form we will evaluate when we want to compute surface derivatives in the
upcoming sections.

The fitting procedure is somewhat complicated by fact that not all neighborhoods have
five neighbors. And even if a node has five immediate neighbors, they might be positioned
parametrically so as to make the full quadratic fit ill-conditioned (i.e., if two neighbors are
nearly collinear). We cannot look beyond the immediate neighbors to bring in additional
nodes, as is common in planar least-squares schemes[F'N90], because an angular ordering
for nodes beyond the immediate neighbors is not determined by the surface triangulation.

In cases where there are not enough neighbors for a full fit, or where the full fit is

poorly conditioned, we throw away some of the polynomial basis functions. For each node
(of sufficient degree), an initial fit of the full basis [1, «, v,%uQ, uv, %UQ] is attempted. The

77

DRAFT: June 28, 1995 - 04:19 Chapter 5. Approximating Variational Shapes

condition number of this fit, ¢ = ||[STS|| - ||(STS)~!||, is then computed (where the matrix

norms are Frobenius norms[GVL89], ||A|lr = />, Zj a?j).

If the fit was ill-conditioned (say, ¢ > 1000), or if there were too few neighbors, a fit is
attempted with the reduced basis functions [1, u, v, %(uQ—I—UQ)] for interior nodes'. Boundary
nodes, which will rarely have enough neighbors for a full fit, are treated specially: the
parameterization is constructed so that the two boundary nodes lie on the fu axis, and
the basis functions [1, u, v, %uQ] are used. This lets a surface curve along its boundary while
remaining flat in the infield direction. As before, the condition number is evaluated and an
ill-conditioned fit rejected. As a last resort, a planar fit (for boundary or infield nodes) is
made with the basis functions [1, «, v].

A shortcoming of this approach is that the somewhat arbitrary choice of basis functions
could lead to instability over time. A neighborhood that is nearly well-conditioned might
switch back and forth between different sets of basis functions on successive parameteri-
zation/fitting operations when used in the iterative minimization procedure later in this
chapter (we have not actually observed such behavior). Better would be to consistently use
the same set of basis functions and optimize some auxiliary norm in the underdetermined
case. Barth’s approach[Bar90] is an example: an orthogonal decomposition of STS splits
the range into well-conditioned and ill-conditioned subspaces. Ill-conditioned components
can be left out of the fit, and then values chosen for them that minimize a separate norm,
e.g., coefficient magnitudes. Unfortunately, the orthogonal decomposition adds a good deal
of computational expense, and it will thus degrade the overall interactivity of the modeler.
We do not use such a scheme because we have not observed the instability problems it is in-
tended to solve. Our meshing procedures (Chapter 6) do a fair job of keeping neighborhoods
well-conditioned so that this borderline behavior doesn’t arise.

5.3.3 Curve coordinate fitting

Fitting curve neighborhoods is so mathematically and algorithmically similar to surface
fitting that we’ll omit the details. A quadratic curve segment will be fit to each nodal
neighborhood in the curve, parameterized as discussed earlier. The fitting procedure above
is used with the monomial basis functions b(t) = [1,¢, 5¢?]. The vector form for the fitted
curve position function ¢(¢) is then

c(t) = b(1)BP, (5.7)

where B is a 3xnpts array computed as in Equation 5.6.

5.4 Geometric objective functions

In Section 2.5.2 we discussed a geometric thin plate function that gives a measure of curves’
and surfaces’ total curvature. Shapes that minimize this measure are free of unwanted
wiggles, creases, or bulges (i.e., they are fair). Here we revisit curve and surface elastica,

Tt is tempting to damp the second-order terms in the system matrix STS by adding a constant on the
diagonal. This will insure well-conditioning without these repeated fitting attempts. We tried this, but it
lead to curvature estimation errors that noticeably degraded the fairing computations of the next section.

78

5.4. Geometric objective functions DRAFT: June 28, 1995 - 04:19

and with some mathematical manipulation arrive at forms that can be simply and efficiently
evaluated over the quadratic mesh neighborhoods of the previous section.

5.4.1 Thin spline curve functional

Our chosen curve fairing functional mimics behavior of a physical spline by minimizing
strain energy, approximated as the arc-length integral of curvature:

gcurve - /KQdS (58)

= / (css)%ds, (5.9)

where, as before, (css)2 indicates the dot product of the second arc-length derivative cg;
with itself.

Recall that the chordal parameterization of our p.. curves is an approximation to an
arc-length parameterization. We will therefore take the fitted cs from Equation 5.7 as an
approximation to css. Unlike the linearizations discussed in Section 2.5.2, this approxima-
tion inherits metric information from its special parameterization, and will not suffer the
same distortions as in Figure 2.7 (the ultimate result is illustrated in Figure 8.1). This
use of an approximate arc-length parameterization in order to have vvc’ approximate k2
appears in Hagen’s work[HS90, HB91b)].

5.4.2 Thin plate surface functional

By analogy to curve fairing, we take as the surface fairing objective function the integral of
the squared principal curvatures over a smooth surface

gsurf = / (H% + H%) dA, (510)
S

where dA is the differential area form. This, and approximations to it, have been used as
approximations the strain energy of a thin elastic plate. In order to express the thin plate
functional in terms of a general parametric surface, we’ll need some definitions and results
from differential geometry ([Ham93, Spi79b]):

We begin with a surface s parameterized by u,v and immersed in R? ,
s =s(u) = (z(u,v), y(u,v), z(u,v)).

In the remainder of this section, all definitions and formulae assume s is being evaluated at
a particular point ug € R? , though we will avoid notational clutter and not indicate this
explicitly.

The partial derivatives s, and s, are a basis for the tangent plane at each surface point,
though they are not necessarily orthonormal. The matrix of metric coefficients

79

DRAFT: June 28, 1995 - 04:19 Chapter 5. Approximating Variational Shapes

where 2, j € u, v, give rise to the first fundamental form, I:
I(x,y) =x'Gy,

for tangent vectors x,y € R? (with respect to the tangent basis vectors s, and s,). Simi-
larly, the normal section curvature coefficients

L[Sw'® Sw-m ’
Syy *M Sy, - 1
where n is a unit surface normal, i.e.,

Su X Sy
n— ——
[su X sy

give rise to the second fundamental form, I11:
I1(x,y) =x"Ly.
A basic result from differential geometry says that the eigenvalues (both real) of the matrix
A=G'L

are the principal curvatures k1 and kg ([Spi79b],I11.51). That means a matrix Q exists that
diagonalizes the matrix A by mapping s, and s, to two orthogonal unit eigenvectors:

_ K1 0
AQ 1= .
asq1- ()
Other important quantities related to A are the Gaussian curvature:
K = k1ky = det(A) = det(L)/det(Q),

and the mean curvature
K1+ K2

2
(recall that det and trace, like the eigenvalues themselves, are invariant under similarity
transformation and thus do not depend on our choice of parameterization).

H= = trace(A)/2.

We are interested in the sum x% 4 x2, the geometric thin plate integrand. This quantity
is not so nicely related to A, L, or G. We may write it as:

K+ K3 = (k1 + 52)2 — 2K1ky = 4H? — 2K,

which leads to a rather complicated expression in terms of the elements of L and G (that is
nonetheless quadratic in the elements of L). Rather than pursue this line further, we note
two facts: first, if the tangent plane basis vectors are orthonormal (that is, ||sy|| = [|s.]| =1
and s, -s, = 0), as they are for a geodesic parameterization, then G will be orthogonal.
Second, the sum of the squares of the elements of any positive definite symmetric matrix
(the Frobenius norm, denoted || - [|%) equals the sum of its squared eigenvalues (because
this norm is invariant under isometry). Thus, for G orthogonal we may compute x% + k3

80

5.5. Discretized objective functions DRAFT: June 28, 1995 - 04:19

directly as ||L||%, since Q in Equation 5.4.2 must be orthogonal in this case. Then we have,
in terms of L’s elements,

Euwt = [((Suu) + 20500+ 0)* + (510 - m))dA,
S

which is also quadratic in L’s elements. It is worth pointing out that

[1L{[7
IEl%

K+ K3 #

though this is a tempting-looking formula.

Recall that we take our faceted parameterizations as approximations to a geodesic maps
for the neighborhoods. As with curves above, we take the derivatives of the fitted surface
quadratic (Equation 5.6) as approximations to derivatives wrt such a geodesic map, taking
advantage of the built-in metric information from the parameterization to justify simplifying
the curvature expressions. Similar use of a local quadratic fit to estimate /7, and subse-
quently, surface curvature at a point, has appeared in [SZ90] and [Ham93], though in that
work projection onto an estimated surface normal is used to parameterize the neighborhood.

5.5 Discretized objective functions

Having selected a surface representation in the form of a collection of nodes (and associated
edges/faces), we are ready to discretize the objective function by evaluating it only at the
neighborhood centers (where our curvature estimates are best).

5.5.1 Discretized curve objective function

For a point-sampled curve, the integral in Equation 5.9 is approximated as an area-weighted
sum of integrands over sample points:

Ecurve = Z (Ctt(o))2a07 (511)

cEnodes

where ¢ is the local curve function of Equation 5.7, and . the width of the curve segment
associated with node ¢ (nominally, 1/2 the distance to each neighbor). Because each of the
local ¢ reconstructions is quadratic, each ¢4 is constant within its neighborhood. Interest-
ingly, this means that we could just as well view the numerical integration as being exact
over a collection of discontinuous quadratic curve elements, since [€ is simply €(0)a in
this special case (this will also be true of the surface objective function, below, so that we
may think of the surface as being a union of quadratic patches).

5.5.2 Gradient and Hessian of the curve objective function

Substituting (5.7) and evaluating the derivatives of the basis functions b(0) gives us Feyrve a8
a function of the node and its neighbors’ positions P:

Ecurve - Z (BSP)Z ' (BSP)Z Gy, (512)

i€nodes

81

DRAFT: June 28, 1995 - 04:19 Chapter 5. Approximating Variational Shapes

where Bjs is the third row of the nodal neighborhood basis matrix, corresponding to the
curve’s second-order coefficients. We will be less concerned with evaluating Ecurvethan
its gradient and Hessian with respect to P, because the absolute magnitude of Ecurve is
not important — we will know it is at a minimum when its gradient has vanished. As is
standard, we linearize this objective function with respect to the metric information a by
treating the @; as constant, yielding an objective that is quadratic in P (of course, we re-
evaluate ¢ whenever the parameterization changes). We will use the resulting gradient and
Hessian to set up an quadratic approximation to the minimization problem, and ultimately
solve a series of such problems to converge on the true minimum.

In actually computing the gradient and Hessian with respect to the elements of P, we
will want a global “flattened” P, a single vector of concatenated z,y,and z values from
every node in the mesh, denoted P. This P is the vector of independent variables whose
values we will solve for in the course of minimizing the objective. If; for simplicity, there
was only a single neighborhood, the corresponding Hessian for Ecurve would be a 3n X 3n
block-diagonal matrix, with the outer product B B replicated once along the diagonal for
each of z, y, and z, like so:

) S B; ® B3 0 0 P,
Ecurve = (PTzPTyPTZ) 0 B: ® B3 0]?y a (513)
0 0 B; ® Bs P,
= PTHP (5.14)

When there are many nodes, on the other hand, P gets correspondingly longer, and the
Hessian for any particular neighborhood will be very sparse, with 3(n+ 1)? nonzero entries
scattered throughout. The global Hessian is then the sum of these very sparse neighborhood
Hessians. We’ll not attempt to write out an expression for the global H, since we’ll never
actually have to generate and store it as a monolithic matrix. Instead, the solver (below)
will only require that we compute matrix-vector products with H, and this can be done by
summing the matrix-vector product with each neighborhood Hessian.

5.5.3 Discretized surface objective function

Analogously to the curve objective, for a triangulated surface the objective integral (Equa-
tion 2.5.2) is approximated as an area-weighted sum of integrands over sample points:

Egut = Y ((50u(0,0) 1) +2(5,,(0,0) - n)? + (5,,(0,0) - n)?) a, (5.15)

s€nodes

where s(0,0) is the fitted surface function for each neighborhood (Equation 5.6) evaluated
at its center node, n the fitted surface normal function, and a the neighborhood’s associated
area (nominally, 1/3 the area of each of the triangles in its parametric neighborhood).

5.5.4 Gradient and Hessian of the surface objective function

As with curves, the derivatives in the equation above are simply dot products with rows of
B:
$uu(0,0) = B3P, 5,,(0,0) = 5,,(0,0) = B4P,s,,(0,0) = B;5P,

82

5.5. Discretized objective functions DRAFT: June 28, 1995 - 04:19

where Bj; is the jth row of the neighborhood basis matrix we fit in Section 5.3. Substituting
these gives us Egyt as a function of P:

Esurf — Z ((BSP) 1’1)22 + 2(B4P : n)? + (B5P . n)?) a;. (516)

i€nodes

The dependency of FEuef on the node positions is given by its gradient with respect to
P. We linearize Fguf with respect to the n; and a; (and implicitly, G) by taking them to
be constant when computing this gradient.

The effect of the linearization is easy to picture, if we consider only one neighborhood
at a time. The dot-product against n means that the gradient is only sensitive to motion
in the normal direction. Thus, the objective function treats the surface like a height-field
with respect to the tangent plane at the neighborhood center. This suggests that we might
reduce the number of free variables by allowing each sample to move only in the direction
of its current normal. Instead solving directly for n new point positions, requiring that we
solve a system of 3n X 3n equations, we solve for n normal offsets « from the current point
positions, resulting in only an n X n system:

Egut = Y ((Bs(P+aN)-n)?+2(Bs(P +aN) -n)? + (Bs(P + aN) -n)%)a, (5.17)

i€nodes

where « is a vector of offsets and N a list of neighbor normal vectors n; (ordered just
like P). Thus, oN is a list of offset vectors from the P computed by scaling each n; by
its corresponding «;. It is these o; that we want to solve for, rather than solving for P.
To minimize Esurf, we will compute a minimizing « using the current sample positions,
normals, and areas; then alN will be added to P to move the points to these new positions.
To picture this more restricted situation, imagine the surface as a tent, with the samples as
tent-poles arranged at various angles, propping it up to give it shape. This new FE st controls
shape by shortening or lengthening the tent-poles. After a length change, the poles will be
re-oriented to point in the new surface normal directions. In our experience, this normal-
offset scheme yields surfaces visually indistinguishable from those produced by the original
unconstrained computation of P, while requiring the solution of a much smaller system
of equations. It also yields more stable behavior in conjunction with the mesh smoothing
operations developed in the next chapter, because the shape optimization doesn’t compete
with our sample re-distribution process, which moves nodes tangent to the surface.

Noting that our linearizations with respect to N, «, and P make FEout 2 quadratic
function of «, we should be able to rearrange terms to put Equation 5.17 in the form
aHa+g-a+C, for use in gradient and Hessian calculations. But standard vector notation
has broken down for us in Equation 5.17 because of the way « scales N, and rearrangement
will only exacerbate the problem. With apologies in advance (there really seems to be no
appealing way to continue the derivation), we will re-write the summand of Equation 5.17
using index notation?, which will then allow us to re-arrange its terms unambiguously:

Eaurt = ((Bsi(Pij+Ditm @r N)1;) 2 42(Bai (P +Ditm @k N) 15) 24 (Bsi (Pij4Digom ks Ny)))
(5.18)

2In index notation, an unsubscripted quantity is a scalar, one subscript denotes a vector, and two denote
a matrix. Under the summation convention, the appearance of any index twice in a term implies summation,
so that M;;v; means Z] M;;v;, which is matrix M times vector v.

83

DRAFT: June 28, 1995 - 04:19 Chapter 5. Approximating Variational Shapes

where the neighborhood index from the earlier summation has been dropped (all quantities
are specific to the particular neighborhood being evaluated) and the diagonalizing constant
Dijr = 1if i =j =k, and 0 otherwise ®. Now, let

(BB)Z'J' = Bging + 2B4Z'B4j + B5Z'B5j (5.19)
within each neighborhood. Some rearrangement of Equation 5.18 yields
E= 3" nj(NpjarDigm + Pyj) (BB)ig(Py + Dystas Ny), a (5.20)
nodes
O‘k(njzvmjpikm (BB)iqustNtrnr)as

I
= > (21 P;;(BB) iy Dyst Nipn,) g a, (5.21)

nodes +

n;iBij (BB)igPyrnr

which is the form we seek. We can then read off the neighborhood Hessians and gradients
of Ecurve or Esurf as

0*E
Hys = Jodas = ’anmjDikm(BB)iqustNtrnra7 (5.22)
ek
OF
gi = £ = H;;o5 + QTLijj(BB)kq/inthtrnra (5.23)

The global Hessian and gradients are simply the sums over all neighborhoods of these local
versions. A word on evaluating terms like (BB);Dgs¢t N¢rnp: D is a notation aid, not meant
to be used explicitly in computation. Instead, we first evaluate the product Ny-n,.. The
resulting vector is then used to scale the columns of (BB);,.

5.5.5 Geometric point and curve constraints
Point interpolation

Point interpolation constraints for a curve or surface are enforced by simply freezing the
positions of their associated nodes during minimization. We might also have placed the
point interpolation constraint on the interior of an edge or face, resulting in a more general
linear constraint analogous to the point-constrained B-splines of [WW92]. But refinement
is cheap and easy in our p.l. representation, so having to create a node for each constraint
point is no hardship.

Of course, just because a node’s position is frozen does not mean that the node disap-
pears from our calculations altogether: a frozen node is no longer considered an independent
variable, but it still contributes constant terms to the gradient. For curves, we split P into
unconstrained and constrained parts Q and R, which partitions H into blocks representing
cross-terms between the constrained and unconstrained points:

QR QR N
A aTaT | H H Q
E=[Q R][HRQ HRR] [R] (5.24)
SD.']kaib]ck = aoboco + aibici + -+ - anbycn. D is a notational trick that lets us construct a diagonal

scaling matrix from a vector (and exploit the symmetries of this operation).

84

5.5. Discretized objective functions DRAFT: June 28, 1995 - 04:19

The gradient of E with respect to the active nodes is then
g =HY?Q 4 2H?FR. (5.25)

For surfaces, because constrained « values are always fixed at 0, only the H?% terms need
to be evaluated.

In upcoming chapters, where we develop an automatic re-triangulation scheme to run in
parallel with the fairing computation, we will see how these point interpolation constraints
become sliding (nonparametric) interpolation constraints.

Curve and region interpolation

Curve and region interpolation constraints, in which an embedded curve or surface region is
constrained and controlled separately from the faired surface, are implemented as collections
of point constraints over the affected areas. Region controllers (described in Chapter 7) will
be responsible for positioning these constraint points and controlling the mesh refinement
within these constrained regions.

Continuity across control regions

Recall that a surface forced to interpolate a closed embedded control curve is represented
as three disjoint mesh regions — the inside, the outside, and the embedded curve itself.
The nodes in these disjoint regions do communicate with each other, through the fitted
neighborhood quadratics. Thus, even though the nodes in the embedded curve have their
positions fixed, these nodes’ derivatives incorporate positional information from nodes on
either side of the curve, and the continuity across this fixed curve is thus the same (G?
in the limit) as across any unconstrained mesh edge. If we actually want a crease in the
surface along the embedded curve, we split the surface mesh along the curve as discussed
in Chapter 4, and force the two independent surfaces to interpolate the same crease curve
without sharing any other neighborhood information across their boundaries. If we want to
control the dihedral angle at which these surfaces meet, we use a ribbon constraint (below).

Curve tangency at a point

In addition to constraining curve positions at selected points, we must be able to constrain
a curve to be tangent to a given line at a given point. Suppose 1(t) = xq + T, where xq
and T are a point and a unit vector, respectively. We force the curve ¢ to be tangent to 1
at xg by constraining a point c¢; to remain at xg as above, and also enforcing the following
linear constraint:

¢(0)="T (5.26)
B;P, =T (5.27)
(Bg is the second row of B, as in previous sections). This constraint cannot be properly

enforced by freezing node positions, as was done with position constraints; instead, we will
use the technique of Lagrange multipliers[Str86], to be described below.

85

DRAFT: June 28, 1995 - 04:19 Chapter 5. Approximating Variational Shapes

Surface boundary ribbons

In addition to directly enforced point constraints, we consider another more complicated
constraint on surface boundaries: the ribbon constraint, which controls cross-boundary
tangents along a surface boundary curve. Recall from Section 5.3 that our local fitting
scheme aligns surface boundaries in the parametric u direction. Thus, enforcing a cross-
boundary tangency constraint at a point amounts to enforcing

s,(0,0) =R (5.28)
By(P+aN)=R (5.29)

at the boundary mesh node (B; is the second row of B). We can turn this into a ribbon if we
are given tangent vectors R for each point on the boundary curve (a cross-boundary tangent
function). Again, such linear constraints will be enforced through the use of Lagrange
multipliers, below.

5.6 Minimizing the objective functions

The curve and surface objective functions E.yrveand Egyrrare nonlinear functions of the mesh
node positions. We will compute a minimizing set of node positions by solving a sequence
of quadratic approximations to the true nonlinear problem (quadratic steps in a sequential
quadratic program[GMWS81]).

The quadratic sub-problems are minimizations of the linearized Ecurve and Esurf objective
functions just described. Given mesh and curve shapes, we parameterize node neighbor-
hoods, fit a quadratic function to each node neighborhood, then take a step towards the
minimum of the linearized objective functions evaluated with respect to the current fitted
neighborhoods. The idea behind the iteration is that near the nonlinear objective function’s
true minimum it can be well-approximated by a quadratic function, so that minimizing this
function (which is easy) also minimizes the nonlinear version (which is hard). The assump-
tion is that near the minimum, control parameter gradients are small, and therefore the
ignored gradient terms due to our linearizations will not matter so much. This all depends
on beginning our iterations with a mesh shape that is “reasonable”, or the iterations will
diverge and not home in on the minimum. This issue of good initial guesses is discussed
further in Chapter 7.

A quadratic step involves moving towards the the minimum for our quadratic objective
functions Ecurve or Esurf. The minimization, subject to point constraints (Equation 5.24),
is performed by solving for a value of Q that zeros the gradient, which means solving the
linear system H??Q = —2H?XR . There may be additional linear constraints that must
be maintained, such as those contributed by tangency requirements. To enforce these, we
concatenate them as rows of a single matrix equation C = t, where t is the vector of fixed
constraint values. We then use the technique of Lagrange multipliers[Str86]: an additional

free variable y, is added for each of the constraints, and we solve the augmented system

(e T)S)- ()

86

5.6. Minimizing the objective functions DRAFT: June 28, 1995 - 04:19

This system matrix is generally very sparse, as there is a zero for each pair of nodes
not connected by an edge. The nonzero matrix entries will contain different values for
every quadratic step we take (because the neighborhoods are re-parameterized each time).
Therefore, rather than factor the Hessian explicitly (asin [WW92]), we solve the system us-
ing a conjugate-gradient method[Str86, She94], which only requires matrix-vector products
with the system matrix, not an explicit representation. We compute these vector products
by looping over the nodes, accumulating each neighborhood’s contribution to the product.
Technically, solving the linear system is O(n?) in the number of nodes; but we really expect
the cost to scale as O(n?) on average because of sparsity arising from the local structure of
the mesh (nodes rarely have more than 6 neighbors). The neighborhood-at-a-time approach
to multiplication automatically takes advantage of the sparsity inherent in the global Hes-
sian: since zeros in the Hessian correspond to node pairs that don’t share a neighborhood,
no time is wasted explicitly multiplying by such 0 entries.

Algorithm: Quadratic step (Figure 5.1)

1. parameterize each nodal neighborhood (Section 5.3.1)
2. fit a quadratic function at each neighborhood (Section 5.3.2).

3. Compute new positions for the infield nodes by solving the system of linear
equations in Equation 5.6. This may involve solving for more than one region
simultaneously, e.g., if interior control curves cut a surface into multiple
regions that must meet smoothly at the control curves.

At this point we should be through — we have a method of representing variational spec-
ifications, and a method of iteratively constructing an approximation to the corresponding
variational shapes. Unfortunately, a look at Figure 5.6 shows that our iterations do not
actually converge on a reasonable approximation. As the iterations progress, nodes tend to
drift towards one another, clumping up near constraint points and curves, and leading to
surfaces that bear little relation to the faired shapes we asked for.

The reason for the lack of convergence is that the relative sizes and shapes of the
parametric neighborhoods in the mesh strongly influence the numerical conditioning of our
calculations. As it happens, our shape functions say nothing about the distribution of nodes
over a mesh, and therefore we should not be too surprised that the nodes drift about within
the mesh, leaving poorly shaped triangles in their wake. Clearly, in addition to worrying
about a mesh’s shape, we must also be concerned with distributing and triangulating its
nodes to yield a good computational mesh. This is taken up in the next chapter.

Summary

We have described a method of approximating thin plate surfaces of arbitrary topol-
ogy using a p.l. surface mesh. A novel neighborhood parameterization scheme (faceted
parameterizations) is used to fit a local polynomial surface at each node in an unstructured
surface mesh, and thus estimate surface normals and curvatures at the nodes. This spe-
cial parameterization also simplifies the evaluation of the geometric thin plate function at
a node, generalizing to surfaces the technique of chordal parameterization. Approximate
minimizers of the geometric elastica and thin plate fairness functions for curves and surfaces

87

DRAFT: June 28, 1995 - 04:19 Chapter 5. Approximating Variational Shapes

Figure 5.6: (1) A point in the center of the disk is elevated. (2) The point is moved to the
side. Notice the neighborhood around the point becoming less crowded (3) After repeatedly
moving the point around and finally returning it to its original place, the node distribution
over the mesh has degraded to the point that the shape approximation performs poorly.
The problem will be solved by the computational mesh maintainer described in the next
chapter.

are computed through a sequence of quadratic minimizations over the mesh nodes. This
approximation procedure will be used as a “region controller” to compute shapes for the
faired curve and surface regions of our tagged meshes.

88

Chapter 6
Maintaining a Quality Mesh

Synopsis

In this chapter we address three principal concerns in maintaining a quality com-
putational mesh for the mesh approximation of Chapter 5: sample distribution,
triangle shape, and node density.

1. We will keep nodes uniformly distributed by minimizing a sampling density
objective function over the triangulated surface.

2. We will keep triangles well-shaped by using an incremental surface Delau-
nay triangulation scheme.

3. We will keep an appropriate sampling density by automatically adding or
deleting mesh nodes in response to changes in curve lengths or surface
areas.

These mesh optimization steps will be interleaved with the shape optimization
iterations of the previous chapter, so that a good computational mesh is always
present.

In Chapter 4, we used a mesh as a representation of curve and surface topology. In
Chapter 5, this same mesh was used as a triangulated approximation to a variational surface
shape. In doing so, implicit use was made of the mesh in a third way — as a polyhedral
manifold or computational mesh over which the finite-difference calculations were performed.
In this chapter, we consider this third (and final) role for our meshes in more detail.

The shape optimization of the previous chapter says nothing about the relative distri-
bution of nodes over the surface. Left to themselves, the nodes tend to drift towards one
another and clump — resulting in a bad computational mesh, and subsequent failure of the
fairing computations (Figure 5.6). Therefore, as the surface mesh changes size and shape
during a design session, we must work to maintain a quality computational mesh.

What is a good computational mesh?

What characterizes a good mesh, and how to construct one, is properly the concern of
the field of numerical grid generation[TWMS85, Tho85]. Informally, a good mesh is one

89

DRAFT: June 28, 1995 - 04:19 Chapter 6. Maintaining a Quality Mesh

P

Figure 6.1: A collection of coordinate charts, one for each node-centered neighborhood.

whose sample points are spread over the surface in a smooth way, and whose triangles are
well-shaped. A smooth sample distribution might mean the nodes are evenly spaced (their
density is constant in all directions); or, if they are dense in some areas and sparse in others,
that the spacing changes smoothly (their density has a constant gradient over the surface).
Triangles are well-shaped if they are not skinny

The reason quality meshes are important for our computations is that poor meshes —
ones with unevenly scattered points or skinny triangles — lead to ill-conditioned numer-
ics and magnified truncation error (the error due to the use of truncated Taylor series
approximations)[TM83, Hof82]. Schemes like the Taylor series reconstruction of Section 5.3
perform better as derivative estimators when a node’s neighbor points aren’t at wildly
differing radial distances or angles.

In considering our triangulated surfaces as computational meshes, recall that, strictly
speaking, the computations of the previous chapter do not take place directly on the poly-
hedral surface. They are instead scattered over the various parameterizations we construct
for each of the mesh neighborhoods. The computational domain may be more properly
visualized as a triangulated surface with each node bearing a flattened picture of its neigh-
borhood (Figure 6.1). But the geometric relationship between the mesh and these neigh-
borhood maps is very close, with well-distributed points and well-shaped triangles on the
surface generally leading to well-shaped parametric neighborhoods. We’ll often refer to the
mesh and associated charts as the computational mesh (as opposed to the topological or
approximating mesh) when we want to emphasize this role as domain for our smooth surface
calculations.

90

6.1. Sample point distribution DRAFT: June 28, 1995 - 04:19

6.1 Sample point distribution

We begin with the problem of distributing samples over a computational mesh. Because
the mesh shape will be continuously changing as a result of user interaction, we rule out
constructive, one-time schemes, such as those using random point placement or Steiner point
insertion algorithms[BE92]. A purely constructive scheme would require that we generate
a brand-new sample distribution with each iteration of the shape optimization calculation,
oblivious to the existing sampling. Instead, we consider relaxation-based schemes, which
can take advantage of temporal coherency (the fact that the mesh shape does not change
much from one time-step to the next), by using the previous mesh as a starting point for
computing the next mesh. In addition to being (potentially) less work, this also avoids
numerical stability problems that might arise from discontinuous changes in the domain
partitioning that would likely arise for a complete re-sampling of the domain.

As we discussed in Chapter 2, there are continuum methods and sample-based methods
for controlling mesh vertex distribution over a physical domain. Continuum methods treat
the mesh as a discretization of some continuous computational domain, and solve a system
of grid generation equations that map the nodes into a smooth distribution over the physical
domain. Generatorssuch as the Laplacian can guarantee the mesh will not fold over on itself.
Sample-based methods, on the other hand, operate on a collection of unorganized points as
a discrete sampling of a computational or physical domain, with no specified interconnection
topology, and use pairwise repulsion forces to distribute the points evenly over the space.
As was discussed, it is unclear how to guarantee that an associated triangulation will not
fold over on itself as the points move about on the surface. Nor do we wish to incur the
computational cost that would accompany a wholesale re-triangulation of the points as in
[Tur92]. For these reasons, we will use a node positioning approach based on Laplace’s
equation over the surface. Throughout this chapter we focus our attention on surfaces; the
reduction of these techniques to 1D, for curve re-sampling, is simple and straightforward
enough that it will not be given separate treatment.

6.1.1 Laplace’s equation for planar meshes

As discussed in Chapter 2, the planar Laplace’s equation may be used to smoothly map a
regular computational grid onto an irregular physical domain:

Ugg + Uyy = 0, Upz + vyy = 0.

Notice that computational (u, v) are expressed as functions of the physical coordinates (z, y),
reflecting the fact that we are concerned with node distribution in physical space. These
equations can be obtained (via the Euler-Lagrange equation) as solutions to the variational
minimization of the integral[BS82]

// (e, uy)? + (Vg vy)*)dz dy.
The term (uy,u,)? measures the squared density of grid points as we move along the u

parameter line, similarly for v. Thus, minimizing this expression yields a mapping of grid
points into the physical domain whose density changes smoothly. It is also possible to view

91

DRAFT: June 28, 1995 - 04:19 Chapter 6. Maintaining a Quality Mesh

Figure 6.2: Laplacian smoothing in the plane: approximate a solution to the Laplace grid
over the mesh by iteratively moving nodes to centers of their neighborhoods. This breaks
down for non-convex neighborhoods, whose area centers (marked with an ’x’) may lie outside
the neighborhood polygon.

(uz, uy)? (and similarity for v) as measuring the energy in an imaginary spring connecting
successive grid points. Minimizing the integral amounts to equilibrating the spring sys-
tem, and again a smoothly changing mesh density results. Given a rectangular grid, it is
straightforward to discretize and solve either of these by computing derivatives of the u and
v functions using finite differences.

A smooth planar mesh generated by solving the variational form of the Laplacian grid
generator.

For an unstructured grid, things are not so simple — we have no (z,y) coordinate lines
over which to measure grid density. A popular generalization extends the spring idea to
unstructured meshes, minimizing the energy of a spring network that connects each node
with its neighbors. If this is implemented by iteratively moving each mesh node to the
centroid of the neighbor points, it is known as Laplacian smoothing[Fie84]. One mildly
objectionable feature of this approach is that, if there are fixed nodes closely spaced along
the mesh boundary, their springs tend to “gang up” on any shared interior nodes and pull
them very close to the boundary. An alternative version of Laplacian smoothing moves nodes
towards the centroids of their neighborhood polygons, and gives similar results but does not
suffer this defect (Figure 6.3). Both methods work best with convex neighborhoods, and
even better in conjunction with an incremental Delaunay triangulation scheme as reported
in [Fie84]. But non-convex neighborhoods that don’t contain their centroids are a problem,
since the smoothing operation will cause the grid to fold back on itself (Figure 6.2). We
will return to this point in a moment.

6.1.2 The surface Laplacian

Evaluating the Laplacian over a surface in 3D is a rather complicated affair, involving the
so-called Beltrami derivative from differential geometry[Spi79b, War86], which “build-in” a
projection of derivatives onto surface tangent planes. That assumes we have a rectangular
mesh, and have re-expressed the grid system in terms of this (u,v) parameterization. For
an unstructured surface mesh, things are of course even more complicated, leading us to
consider generalizations of the planar spring system above. Rather than use Beltrami

92

6.1. Sample point distribution DRAFT: June 28, 1995 - 04:19

Figure 6.3: 3in

derivatives, we can solve for each new node’s position in 3D and then a-postiori project these
offsets against the nodes’ tangent planes, similar to Barr, et al.[BCGH92]. An example of
such a tangent-projected spring relaxation is illustrated in Figure 6.4.

Analogously to the planar case, we can also consider a surface Laplacian smoothing
scheme in which nodes are moved towards their neighborhood centroids. We will accomplish
this without any kind of projection operations, by using our faceted parameterizations from
the previous chapter. A smoothing iteration consists of, for each mesh node, computing the
area center of its faceted parameterization, mapping this back to a point on the polygonal
surface, and sliding the node toward this point. The results are qualitatively similar to the
spring system, but do not rely on our having fitted quadratics to evaluate tangent planes
for the nodes. This also has an advantage over the planar Laplacian smoothing scheme:
convex boundary neighborhoods, like that in Figure 6.2, are opened up into half-discs by
the faceted parameterization. For internal non-convexities, however, we must look to the
re-triangulation scheme below.

93

DRAFT: June 28, 1995 - 04:19 Chapter 6. Maintaining a Quality Mesh

Figure 6.4: Laplacian smoothing over a surface triangulation.

Figure 6.5: Depiction of the surface Laplacian smoothing technique for a single neighbor-

hood.

6.2. Surface triangulation DRAFT: June 28, 1995 - 04:19

Figure 6.6: Why sample positioning isn’t enough: in each figure, sample positions are
controlled using Laplacian smoothing. When the original mesh (left) is deformed while its
triangulation remains fixed (middle), badly shaped triangles cannot be avoided. Maintaining
a Delaunay triangulation over the points (right) improves the mesh dramatically.

6.2 Surface triangulation

The sample distribution scheme above moves nodes around within their respective trian-
gulated neighborhoods, assuming a fixed mesh connectivity. Although this does improve
the quality of the triangulation by equilibrating edge lengths somewhat, it is not suflicient
to yield the best possible surface triangulation over a given set of points with given topol-
ogy. For example, Figure 6.6 shows a mesh whose sample distribution minimizes f:’smooth, vet
which has many skinny triangles. The figure also shows a Delaunay triangulation (DT) over
the nodes. As discussed in Chapter 2, the planar DT’s max/min angle property makes it at-
tractive for computational mesh generation, because it eliminates skinny triangles whenever
possible.

In this section we outline a scheme for dynamically maintaining a surface DT over the
nodes as they change position during surface re-shaping. The max/min angle property of
the planar DT will carry over into the surface DT. As with the parameterization procedures
of Section 5.3.1, mesh maintenance will be formulated so that it remains faithful to the given
mesh topology, and never relies on the kind of projection and consistency testing found in

[Tur92, SZL93].

6.2.1 The surface Delaunay triangulation

The classical DT is defined over a planar set of points, and generalizing it to 3D surfaces
is not particularly straightforward. Recent work by Chew[Che93] generalizes the empty
circumcircle characterization of the DT to triangulations over surfaces (Figure 6.7). It turns
out that a naive generalization using geodesic distances to inscribe circumcircles on surfaces
is undesirable, because it admits strange situations like self-intersecting circumcircles (and
would be expensive to test, as well). Instead, Chew defines the circumcircle of a triangle on
a curved surface as the surface’s intersection with the sphere that includes the three triangle
vertices and whose center lies on the surface (Figure 6.8). If a local flatness assumption holds

95

DRAFT: June 28, 1995 - 04:19 Chapter 6. Maintaining a Quality Mesh

Figure 6.7: One characterization of the DT is that its triangles’ circumcircles are all empty.
The upper triangulation contains an edge that is not in the DT, and its associated circum-
circles contain other vertices. This is not true of the lower figure, the DT of the points.

(the surface normals within the union of circumcircles associated with a given quadrilateral
vary by less than 7/2), it can be shown that this definition shares a consistency property
with the planar circumcircle that makes it a reasonable generalization of the planar DT.
The result is a unique triangulation that maximizes the minimum included angle in 3D.

An important consequence of this consistency property is that a surface DT can be
incrementally recovered from a valid initial surface triangulation by iterative edge-flipping.
One repeatedly tests quadrilaterals in the mesh to see if flipping an edge within the quadri-
lateral will improve the triangulation (by increasing the minimum angle), and continues
flipping such edges until the DT has been restored (Figure 6.9, algorithm below). This is
just like the standard planar DT edge-flipping algorithm, but angles are measured in 3D.
The edge-flips preserve the topological type of the surface mesh, and thus are a topologically
safe way to perform re-triangulation over a surface.

96

6.2. Surface triangulation DRAFT: June 28, 1995 - 04:19

Figure 6.8: Circumcircles on a surface: for a given triangular face, there is a family of spheres
through the three vertices, and their centers all lie on a line. The intersection of this line
with the surface (not necessarily the given face) defines the center of a “circumsphere”, and
the intersection of this sphere with the surface satisfies an important consistency property
satisfied by circumcircles in the plane.

6.2.2 Constrained triangulation

In constructing the surface DT from an initial surface triangulation, there will be edges
that must not be disturbed, such as those that are part of embedded control curves. A
scheme that incorporates these so-called source edgesis referred to as a constrained Delaunay
triangulation, or CDT [DFFPS85]. It enjoys the same max/min-angle property as the DT
(when restricted to consider only triangulations that include the source edges), and thus
an incremental edge-flipping restoration for the CDT is also possible. One simply never
considers flipping a source edge.

6.2.3 The flatness assumption

In order for edge-flipping to terminate, producing the unique surface DT, the surface must
satisfy the local flatness assumption that no dihedral angle exceeds 7 /2. Rather than enforce
this requirement by refining the triangulation in highly curved neighborhoods, as suggested
in [Che93], we have found that it works well in practice to relax the requirement by main-
taining only an approximate DT. We temporarily freeze edges with sharp dihedral angles,
rather than allowing them to be flipped, and this preserves the algorithm’s termination
guarantee.

6.2.4 An incremental surface CDT

For a valid surface triangulation, and an edge e not on the boundary, let). be the quadri-
lateral formed by taking the two triangles on either side of e (Figure 6.9). We say that Q. is
reversed if e forms a smaller minimum angle with the outside edges than the other diagonal
does.

97

DRAFT: June 28, 1995 - 04:19 Chapter 6. Maintaining a Quality Mesh

J N J \

Figure 6.9: Construction of the planar Delaunay triangulation through iterative edge-
flipping. The highlighted diagonal on the left is reversed within its quadrilateral. Flipping
the edge increases the minimum included angle, and restores the DT (right).

Algorithm: Restore-CDT

1. Put all non-boundary, non-source edges into a queue.
2. Remove the first edge e from the queue.

3. If (). is reversed, and the dihedral angle across e does not exceed 7/2,
and flipping e does not introduce a dihedral angle exceeding 7/2, replace
e in the mesh with (J).’s other diagonal. Add the non-boundary, non-source
edges of (). to the queue if not already present.

4. Continue removing, checking, and possibly flipping edges from the queue.
When the queue is empty, the CDT has been restored.

This is a very convenient and inexpensive way to dynamically maintain a CDT over a
gradually changing set of vertex positions. Although the algorithm formally terminates in
O(edges?) flips, it is more often the case that only a few edges will need to be flipped at any
one time assuming the changes in vertex positions are small and given that we began with
a DT over the original positions. We have found it desirable to introduce a bit of hysteresis
by only flipping edges if they increase their local minimum-angle by some small minimum.
This produces an approximate CDT by making edges somewhat more reluctant to flip, but
it reduces “chattering”.

6.3 Controlling the number of samples

The sample distribution and re-triangulation procedures above let us make optimal use of
a given number of sample points. But as surface area grows and shrinks we would like
to adjust the absolute number of samples so that the sampling density remains relatively
fixed. Refinement/re-zoning schemes in finite element computations can be fairly complex.
But given the machinery we already have in place, this last task is very simple for us. We
measure edge lengths in 3D, and trigger an edge-split if any two neighbors are too far apart.
Similarly, if any node is too close to each of its neighbors, the node is destroyed using the

98

6.4. Mesh improvement algorithm DRAFT: June 28, 1995 - 04:19

Split long edges Delete crowded nodes

Figure 6.10: Adaptive mesh refinement: split edges that are too long, delete nodes that
are too crowded. The triangulator improves the mesh afterwards.

node deletion algorithm from Chapter 4 (Figure 6.10). The sampling distribution and re-
triangulation procedures above take care of restoring a quality mesh after one of these mesh
transformation operations.

6.4 Mesh improvement algorithm

The techniques of the previous section can be packaged in a single “mesh improvement”
step, to be applied to p.l. curves and surfaces. As with the quadratic shape steps of the
previous chapter, the following steps will be iterated so that the mesh converges on a good
distribution of nodes with well-shaped triangles (we discuss the interleaving of mesh shape
and mesh improvement steps in the next chapter):

Algorithm: Mesh improvement step

1. Mesh refinement: split long edges and delete crowded nodes.

2. Re-triangulation (surfaces only): restore the surface DT by iteratively
flipping edges to eliminate skinny triangles

3. Mesh smoothing: adjust the distribution of the nodes by performing a curve
or surface Laplacian smoothing step.

Ordering the operations this way seems to leave the best mesh at the end of the step.
The re-triangulator gets a chance to clean up after the simple edge-splitting refinement
operations, and the mesh smoother then gets to optimize neighborhood shapes after the
triangulator has had its say.

Summary

We have described a novel method of maintaining a good computational mesh over a
triangulated surface of arbitrary topology. The method is iterative and incremental, making
it appropriate for use in an interactive surface modeler in which shapes change gradually over

99

DRAFT: June 28, 1995 - 04:19 Chapter 6. Maintaining a Quality Mesh

time. Nodes are kept evenly distributed over the surface by solving a version of Laplace’s
equation restricted to the surface. A surface Delaunay triangulation maintains well-shaped
triangles over the nodes. A simple enrichment/depletion scheme adds nodes to sparse areas
of the mesh, and deletes nodes from crowded areas.

100

Chapter 7

Implementing the Modeler

Synopsis

We combine the shape approximation and mesh optimization computations
of the previous chapters. The combination serves as a black box that, given
a smoothly changing variational specification (stored as a tagged topological
mesh), outputs shape approximations in real time. We discuss a variety of re-
gion shape controllers that can be plugged into the mesh to control the shapes of
constrained regions, and we consider other ways in which this “variational sub-
strate” can be built upon to create interactive modeling application programs.

In previous chapters we have been through good deal of mathematics, and have devoted
some discussion to solution and minimization techniques for our curve and surface fairing
equations. But little has been said about how to combine all this to yield a working modeler.
In this chapter we discuss the implementation of a variational surface modeler. The first four
sections are devoted to algorithms and data-structures that let us wrap the mathematical
machinery of the previous chapters into a “variational substrate.” The goal is a black box
that will accept variational surface specifications as input and serve up mesh approximations
as output, thus encapsulating the details of mesh transformations, shape approximations,
elc..

We begin with a discussion of shape computations, describing how the shape and sam-
pling computations of the previous chapters fit together and are applied to our mesh struc-
tures. Next is a brief a discussion of rendering techniques for meshed surfaces. Following
this is a user (programmer) description of the variational substrate — what kinds of data
and operations one works with in building a modeler on top of this substrate. The remain-
ing sections of the chapter discuss examples of higher-level modeling operations specified
in terms of this programmer’s abstraction, drawn from a prototype direct-manipulation
surface modeler that uses variational curves and surfaces as its basic free-form shape repre-
sentation. Just as other modelers operate directly on B-spline or Bezier patch parameters,
and leave it to lower-level routines to actually render the patches, our variational modeler
operates directly on a variational specification (stored as a tagged topological mesh), and
leaves it to the approximation machinery to maintain a good mesh representation of the
shape.

101

DRAFT: June 28, 1995 - 04:19 Chapter 7. Implementing the Modeler

7.1 Computing variational mesh and curve shapes

As discussed in Chapter 4, our tagged curve and surface meshes are decomposed into a
disjoint union of regions, and each of the regions is assigned its own shape controller. Shape
controllers for variational mesh regions are computed by iteratively minimizing a sequence of
quadratic approximations to the true nonlinear objective function, as discussed in Chapter 5.
On the other hand, constrained mesh regions will typically be tied to explicilt controllers.
Explicit controllers will write their positional information directly into the mesh points they
control. A controller could be as simple as an interpolation point tracking a moving mouse
position, or as complicated as the examples in Section 7.4.1. We consider here at a low level
how to orchestrate the computations of these various controllers to produce an interactive
modeler.

7.1.1 Basic shape iteration

1. For each constraint point (on curves or surfaces), invoke its region controller
to update its position.

2. For each curve segment with an explicit shape controller, invoke the controller
to compute a new curve shape. The controller may depend on previously computed
constraint point positions (from step 1).

3. For each faired curve segment, execute a step towards the minimum shape
(Section 5.6), followed by a curve mesh improvement step (Section 6.4).

4. For each surface region with an explicit shape controller, invoke the controller
to compute a new region shape. The controller may depend on points or curves
computed in steps 1, 2, or 3.

5. For each faired surface region, execute a step towards the minimum shape,
followed by a surface mesh improvement step.

In the computations above, we always compute faired geometry after updating explicitly
controlled geometry, so that faired elements may adjust their shapes in response to changes
in the explicit elements.

In experimenting with this combination of shape and mesh improvement iterations, we
tried leaving out various components of the quadratic and mesh improvement steps, or per-
forming the components at differing frequencies. For example, we tried reparameterizing
neighborhoods every few iterations instead of every time, and similarly for refinement and
re-triangulation phases. The best overall behavior, in terms of stability and speed of conver-
gence, resulted from performing each of the steps once each time through the approximation
loop. For added speed and stability, we have found it helps to turn off re-parameterization,
re-triangulation, and edge refinement whenever an “upstream” shape is changing rapidly
(e.g., when a user is tugging on a control curve). This is because a fast-moving constraint
point typically causes the attached curve or surface to momentarily elongate, and auto-
matic refinement at this point would likely be spurious and needlessly slow down the fairing
computation. Keeping the mesh topology fixed at such times allows the shape to respond

102

7.1. Computing variational mesh and curve shapes DRAFT: June 28, 1995 - 04:19

quickly to gross changes in the constraints. Once the user has stopped manipulating the
control, surface refinement and re-triangulation may resume at a more leisurely pace.

7.1.2 Mesh improvement for other region controllers

The mesh improvement iteration above is general enough that it may also be used with
other region controllers, not just variational patches. For example, in our implicit surface
shape controller below (Section 7.4.1), we only worry about attracting the mesh nodes
to the implicit surface, and rely on the mesh-improvement iteration above to keep nodes
dispersed over the surface and nicely triangulated. In order for this to work well, the
region controller should not attempt to move nodes in tangential directions when adjusting
surface shape, but only move nodes along their current surface normals, as was discussed in
Section 5.5.4. Tangential motion could compete with the mesh smoothing step, and delay
or even prevent convergence. Of course, a region controller is always free to manage its own
node distribution if desired.

7.1.3 Convergence

In considering the formal convergence of these iterations, there is little we can say; but in
our experience the minimization has been well-behaved over a wide range of configurations.
As with almost any nonlinear optimization posed as a sequence of quadratic subproblems,
a caveat is that “reasonable” initial surface shapes must be used. It has not been necessary
to precisely characterize what constitute good starting values for the optimization: because
of the interactive nature of our system, changes to shape are generally incremental, with the
endpoint of one iteration serving as the starting point of the next. It is certainly possible
for a malicious user to make such a drastic change to a constraint in such a small interval of
time that the computation diverges; but in practice the visual feedback from the modeler
(in the form of animated, smoothly-evolving surface shapes) has been adequate to enable
the user to change constraint shapes at a safe and reasonable speed. The place where we
must generate reasonable starting shapes a-priori is when new surfaces are created through
skinning operations. QOur system uses only two such skinning operations, that construct
cylinders and sheets, and we have found that linearly interpolating between their defining
boundary curves works well.

Finally, it should be noted that curvature minimization, while well-behaved in a wide
range of surface configurations, is not always the most desirable shape objective function.
There are some configurations, such as narrow cylinders, in which it performs poorly (cylin-
ders pinch in at the waist, and may even collapse). We re-visit some other possible fairness
functions (and their difficulties) in Section 8.3.

7.1.4 Solver speeds

As discussed in Chapter 5, the equations to be solved when fairing curves and surfaces are
very sparse. We use a conjugate gradient method to solve the associated linear systems,
because it takes advantage of this sparsity without any additional work on our part (i.e.,
in the form of special sparse matrix data structures). Technically, this requires O(n?)

103

DRAFT: June 28, 1995 - 04:19 Chapter 7. Implementing the Modeler

operations, where n is the number of nodes; but we really expect performance to scale
better on average because of sparsity arising from the local structure of the mesh. We can’t
argue for this bound a-priori as we did in Chapter 4 using the Euler characteristic. The
worst case surface mesh is a disc with a single central neighborhood, for then the Hessian
does have O(n?) entries and solution takes O(n®) operations. But the re-triangulator tends
to break surfaces up into evenly-sized neighborhoods (because of the relation of the DT to
the Voronoi diagram), typically having 5-7 neighbors, and solver behavior scales more like
O(n?).

Nonetheless, for large meshes (> 100 nodes), solution times are still much too long for
interactive modeling, where we can afford no more than 100ms per iteration (assuming
we will re-render the mesh between each quadratic step). We therefore take advantage of
another feature of the conjugate gradient solver: rather than viewing it as a “black box”
linear system solver, we note that is actually an iterative solver, with successive iterations
closing in on better solutions to the supplied linear system. Rather than run the method to
full convergence, we allow the conjugate gradient solver only a fixed number of iterations
(10-20) per solve/redraw cycle. This slows global convergence somewhat, but allows us
to redraw the mesh often enough for the user that we maintain the illusion of a smoothly
deforming surface over time. We have worked comfortably with models approaching 1000
nodes, running on a Silicon Graphics Indigo (R4000).

A side-effect of bailing out of the conjugate gradient solver early is that the intermediate
stages we render are not themselves true minima, and the intermediate surfaces look as if
they are moving through a viscous medium as the solution converges over time. It takes
anywhere from 1 to 5 seconds for a surface to reach quiescence after a large change in a
constraint position (intermediate shapes are continuously rendered during this time).

7.2 Rendering

7.2.1 Fast rendering

In between each shape iteration, we will re-draw the mesh shape for the user. To quickly ren-
der a mesh as a “smooth” surface, we evaluate normals at mesh nodes (using the fitted node
quadratics), use these to compute a lighted color for each vertex (Phong shading[F'W94]),
and render each triangular facet by interpolating its vertex colors across the facet. This
kind of rendering has hardware support on the graphics workstations we use (Silicon Graph-
ics Indigos), and surfaces thus rendered are of passable quality for all but the coarsest of
refinement levels. The technique has been used in all of the “smooth” renderings in this
dissertation.

7.2.2 High-quality rendering

If speed is not an issue, a higher-quality (and accordingly more complex) approach to
rendering uses the mesh’s vertex/normal (and possibly curvature) data to fit a network
of smooth patches. One of the simplest schemes is Nielson’s G! triangle[Nie87], but as
we discussed earlier, this and other purely local fitting approaches can yield unattractive
curvature discontinuities across patch boundaries. Moreton’s MVS interpolator[MS92], or

104

7.3. A programmer’s view DRAFT: June 28, 1995 - 04:19

Halstead, et al.’s subdivision surface fairing] HKD93] are examples of globally smooth surface
interpolation schemes that could be applied to a network of patches that would fill in the
triangular facets of our mesh. Alternatively, if the cost of a global scheme is acceptable, we
could use the variational specification encoded in the mesh to drive a high-quality smooth
patch scheme, using the same objectives and constraints that we used in the discrete mesh
approximation.

7.2.3 Orienting surfaces

An issue that arises when using a fast Phong shading scheme for lighting is that vertex
normals must be consistently oriented “outward” across the surface. Our choice of normal
orientation (or its consistency) doesn’t affect the shape or sampling calculations, or affect
lighting calculations that take the time to determine which side of a surface is facing the
viewer, so this is only an issue for quick rendering. The orientation of a mesh node’s
computed normal (as given by the cross-product of u and v tangent vectors) is implicitly
determined by the radial ordering of the neighbors about the node; reversing the order of
the neighbor list reverses the direction of the computed normal but has no other effect. In
choosing an orientation for a vertex normal, we are not helped by the fact that with bordered
surfaces it is not always clear which side is the “out” side, and with non-orientable surfaces
like the Mobius strip a consistent choice of normal direction isn’t even possible. If the
surface is actually orientable, it is straightforward to maintain a consistent orientation over
various mesh transformation operations, or to impose an orientation a-postiori by orienting
a single node and then propagating the orientation to the rest of the mesh (similar to
[HDD*92]). For non-orientable surfaces, more careful rendering techniques must be used®.

7.3 A programmer’s view

Having exposed the inner workings of our variational substrate in some detail, it is time to
see how much of that detail we can hide. In this section we’ll discuss a simple user/programmer
model of this computational machinery that we used in a simple modeler. The idea is to
create and manipulate variational shape specifications as first-class objects while concealing
the details of mesh-based shape approximation and mesh surgery.

7.3.1 Objects
The basic objects available to the programmer are:
e point: a 3D position

e c-point: a 3D point on a curve (corresponding to a node in the p.l. curve represen-
tation).

e curve: a sequence of c-points corresponding to a smooth (curvature-continuous)
curve.

! Any non-orientable surfaces illustrated in this document have had their normal-field discontinuities
carefully moved to the back-sides.

105

DRAFT: June 28, 1995 - 04:19 Chapter 7. Implementing the Modeler

c-region: a continuous subset of a curve, with boundary c-points
s-point: a 3D point on a surface (corresponding to a node in the surface mesh).

surface: a continuous collection of s-points and a surface triangulation over them,
representing a curvature-continuous surface.

s-curve: an embedded surface curve (open or closed), represented as a sequence of
connected s-points.

s-region: a continuous subset of a surface, with boundary s-curve.

These are created and modified by various topological operations, below, and their
shapes are controlled by various region controllers.

7.3.2 Topological operations

We want the programmer to be able to create and make controlled changes to curve and
surface topology, without having to worry about maintaining the consistency of the un-
derlying mesh representation. We use the following topological operations, implemented in
terms of the mesh constructs of Section 4.2.3:

curve(point list): create a free-standing curve, open or closed.

sheet(boundary curve): given a closed boundary s-curve or free-standing curve, fill
in the “hole” with a surface sheet. In the case of a boundary s-curve, the sheet will
meet the existing surface in a crease.

sweep(c-regionl, c-region?2): given a pair of s-curve or curve regions (or entire curves)
of matching topology, create a swept surface between them, meeting any existing
surface in a crease.

s-loop(s-point list): create an embedded surface curve.

burnout(s-region): destroy the surface region, leaving its boundary curves intact. If
the region is a subset of some larger surface, the region’s boundaries become border
s-loops for that surface. This operation may actually split the surface into multiple
unconnected regions.

split(s-region): split the surface along the region’s boundary. This produces two
independent surfaces, and clones the region boundary curve to make two independent
control curves (in the case of a non-orientable surface such as a Mébius strip, there
will be only one resulting surface).

crease(s-region): like split, but the control curve is not cloned and instead both
surfaces remain attached to the original control curve. This relaxes the continuity of
the surface by introducing a crease along the curve. The operation is not defined for
a non-orientable surface region.

smooth(loop): The inverse of a crease operation, this takes two surfaces sharing a
boundary control curve and merges them into a single curvature-continuous surface
with an internal control curve where the crease used to be.

106

7.3. A programmer’s view DRAFT: June 28, 1995 - 04:19

7.3.3 Shape control and region shadowing

But these are more than just collections of point constraints: presumably there is some
separate, smooth curve or surface element whose shape we are trying to approximate with
the constrained region. Without such an externally defined reference shape, it would be im-
possible to perform mesh refinement, UN-refinement, and optimization (Chapter 6) within
these constrained regions, since we would not know how to reposition constrained sample
points. In Chapter 7 we will discuss special region controllers, whose job it is to take mesh
curves or regions and position their points in a sampling of the desired shape, in Chapter 7.
Some care must be taken to coordinate global refinement and re-sampling operations with
such controllers, especially when they themselves are variational shapes.

Shape control is organized in terms of topological regions and region controllers. Regions
are created as side effects of higher-level user actions — e.g., defining c-points on curves,
and s-curves on surfaces (which act as region boundaries).

e set-region-shaper(region, shaper): shaper may be fair for fairness-optimization,
shadow to constrain region to follow another region, or the programmer may build an
external shape controller to be applied to mesh regions, which will be called continu-
ously to update the region’s shape along with the built-in controllers.

e make-curve-control-pt(curve, vertex): Create a free-standing point, initially lo-
cated at the given curve vertex, and cause the vertex to shadow it.

e make-surf-control-curve(surf, vertex list) Create an s-curve and a free-standing
control curve that overlays it, and cause the s-curve to shadow the control curve.

Interpolation constraints provide a partial specifications of curve and surface shapes,
acting as a skeleton over which the topological skin will be draped (Figure 7.4). Whenever
a user grabs a surface point during interaction, an appropriate constraint will be created
and added to this skeleton so that the surface will be forced to follow the user’s motions.
A number of Higher-level shaping tools will interact with the specification by applying
geometric constraints and manipulating them in coordinated ways.

Variational control curves are free-standing variational curves attached to correspond-
ing s-curves. A convenient way to handling such situations uses a special region shadowing
controller. Region shadowing lets us attach p.l. surface curves (sequences of mesh edges)
to free-standing p.l. control curves. It is responsible not only for copying the the positions
of its source nodes into those of the constrained shadowed nodes, but also for maintaining a
one-to-one correspondence between nodes in the the source region and the shadow region.
Whenever the source region undergoes refinement, the shadow region is refined as well, to
preserve the correspondence. Thus, whenever a control curve edge is split, a shadow con-
troller must perform a split on the corresponding edge of the embedded surface curve. This
has a nice effect of allowing the control curve to determine the density of surface sampling
in the neighborhood of the curve constraint. Though we have only applied shadowing to
curves, and in a degenerate sense to control points on curves (the correspondence problem is
trivial), shadowing could apply equally well to surface regions, e.g., to apply an “embossing
stamp” to a surface.

107

DRAFT: June 28, 1995 - 04:19 Chapter 7. Implementing the Modeler

Fixing a Hole

A hole is interactively dragged between two fixed regions on the surface, demonstrating the incremental Delaunay
triangulator at work. Global curvature minimization maintains the surface in a fair shape as it moves. The shape and
position of the hole itself is determined by a free-standing PWL curve to which the surface boundary is attached.

Figure 7.1:

7.3.4 Nonparametric interpolation and sliding features

In addition to the numerical conditioning benefits that derive from a good triangulation,
interleaving mesh improvement steps with the fairing computation has the (somewhat sur-
prising) effect of allowing nodes and edges to migrate across neighborhoods. Surface fea-
tures like bounded subregions and embedded curves are free to slide around relative to
each other within the surface triangulation, without disrupting the mesh’s global surface
topology (Figure 7.1). These are the nonparametric interpolation constraints discussed in
Section 2.5.3. We avoid a difficulty experienced by smooth patch-based surface modelers,
which must maintain parametric or material coordinates for such embedded curves, de-
scribing the (u,v) path of the curves across the patch. For a parametric surface, having a
curve slide across the surface means adjusting its material coordinates to track its projected
physical shape, and this is a messy nonlinear problem.

7.3.5 Mesh surgery revisited

Sometimes we will want to glue together surfaces along two unrelated boundary curves —
curves that have different distributions of nodes, and may not even lie atop one another
prior to the gluing operation. The curves must be brought into node-to-node correspondence
and superpositioned before they can be glued together. One “high road” to solving this
correspondence problem casts it as a minimum edit-distance problem [CLR90], and uses a
dynamic programming scheme to transform one edge loop to match the other through a
sequence of edge-splits, edge-collapses, and node repositionings[SG92a].

Though we implemented a similar scheme, we subsequently found it preferable (and
much simpler) to avoid the superposition problem altogether, and simply create a cylindrical
blend surface that bridges the space between the two boundary curves — assuming the
curves are reasonably close to one another (Figure 7.2). After attaching the blend to the
boundary curves, the boundary curves become interior loops within a single unified surface,
and they may be retained as control curves or freed to yield an unconstrained surface. If
both curves are retained as constraint curves, they may be used to control the tightness and
continuity of this blend region. On the other hand, if one or both of the curves is freed, the

108

7.4. Building on top of the substrate DRAFT: June 28, 1995 - 04:19

OHE)

Figure 7.2: Attaching a handle: (1) one end of a cylinder is brought near the torus sur-
face. (2) The user indicates that a merge is desired, and the modeler cuts a hole in the
torus and attaches the cylinder with a blend surface. (3) The other side of the cylinder is
similarly attached. (4) The user grabs the far handle attachment and slides it to the front,
demonstrating nonparamteric interpolation constraints.

result is ultimately the same as if both curves had first been superimposed and then zipped
together to join the surfaces.

7.3.6 Picking

We allow curve and surface points to be created and selected geometrically with picking
operations:

e ray-intersect-curve(ray, curve): find the point on the curve closest to the ray,
locally refine the curve to place a c-point there, and return the c-point.

e ray-intersect-surface(ray, surface): find the point on the surface closest to the ray,
locally refine the surface to place a s-point there, and return the s-point.

7.4 Building on top of the substrate

Our intent is that machinery thus far described be used to manage the details of mesh
maintenance and shape approximation on behalf of a higher-level modeler. This modeler
in turn would offer more convenient ways of specifying and interacting with geometry. In
this section we demonstrate some ways in which an external client of the substrate might
extend its functionality.

7.4.1 External shape tools

One approach to using our free-form surfaces combines them with standard surface shapes
like generalized cylinders, spheres, etc. Our surfaces act as blends to transition between
portions of these structured surfaces, but with much more topological flexibility than tra-
ditional blend surfaces.

We can incorporate such structured shapes into a free-form model by writing region
controllers that manage mesh approximations to the shapes. Given a triangulated collection

109

DRAFT: June 28, 1995 - 04:19 Chapter 7. Implementing the Modeler

Figure 7.3: A Klein mug, a variation on the famous 1-sided surface. The handle and
sidewalls are controlled by cylinder tools. Variational blend surfaces join the cylinders into
a globally smooth, non-orientable surface.

of nodes (of suitable surface topology), a region controller’s job is to position these nodes
on its own separately-represented surface. The region’s boundary points will also lie on this
surface managed by the controller, so that they act as “trim-curves”. The end effect is that
we may punch holes in or extend simple structured shapes by trimming them and attaching
variational blend surfaces smoothly along the trim curves.

Parametric curves and surfaces

The simplest region controllers are for surfaces that may be represented as functions map-
ping (u,v) surface coordinates to positions in R? | such as swept surfaces. The controller
assigns a fixed (u,v) surface coordinate to each node in its region. Updating the region’s
shape is then a simple matter of evaluating the surface function for each node. We assume
that the controller will do its own mesh management — in (u,v) space — using any of a
variety of standard mesh generation techniques.

Algebraic curves and surfaces

Limited kinds of algebraic curves and surfaces (Chapter 2) can also be used as region
controllers. Unlike parametric surfaces, it is not clear how to implement an algebraic region
controller in a complet